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Previous research has proposed an adaptive cue combination view of the development of human spatial
reorientation (Newcombe & Huttenlocher, 2006), whereby information from multiple sources is com-
bined in a weighted fashion in localizing a target, as opposed to being modular and encapsulated
(Hermer & Spelke, 1996). However, no prior work has formalized this proposal and tested it against exist-
ing empirical data. We propose a computational model of human spatial reorientation that is motivated
by probabilistic approaches to optimal perceptual cue integration (e.g. Ernst & Banks, 2002) and to spatial
location coding (Huttenlocher, Hedges, & Duncan, 1991). We show that this model accounts for data from
a variety of human reorientation experiments, providing support for the adaptive combination view of
reorientation.

Published by Elsevier B.V.
1. Introduction the cue-combination view provides an important alternative. Here
The spatial world provides many cues to where things are. For
example, a pirate may have buried a treasure chest five paces east
from a distinctive tree and one hundred paces away from the
shore. Locating the treasure often requires combining the various
cues to locating the treasure in a probabilistic fashion, using appro-
priate weightings (Cheng, Shettleworth, Huttenlocher, & Rieser,
2007; Huttenlocher, Hedges, & Duncan, 1991). Combining cues
allows for reduction of uncertainty concerning encoding and mem-
ory for individual cues, each of which might not be sufficiently
informative in isolation, but which can jointly provide more pre-
cise, if sometimes biased, localization of a target. This view of per-
ception and memory is also seen in the literature on perceptual cue
integration (Berniker & Kording, 2011; Ernst & Banks, 2002; Jacobs,
2002; Knill & Pouget, 2004). It is typically formulated in terms of
probabilistic inference, which provides a rational account of
human behavior under uncertainty. Such a probabilistic approach
has recently begun to be a focus of navigation research, especially
in studies of how egocentric and allocentric systems interact with
each other (e.g., Sjolund, Kelly, & McNamara, 2014; Waisman,
Lucas, Griffiths, & Jacobs, 2011; Zhao & Warren, 2015). But it has
not been formally specified in explaining human behavior in spa-
tial reorientation, an area in which there have been high-profile
claims of modularity and information encapsulation, to which
we address this gap by formalizing cue combination in probabilis-
tic terms and testing it against data on the development of spatial
reorientation in human children and adults.

Research on behavior when organisms are disoriented (and
therefore when egocentric spatial cues are not useful) seemed ini-
tially to support modularity, because geometric cues were used
while potentially useful featural cues were not, both by rats and
by young children (Gallistel, 1990; Hermer & Spelke, 1994,
1996). The classic experiments were conducted in a rectangular
room, in which the relative length of the walls defines two pairs
of congruent corners (i.e., long wall to the left of short wall, or vice
versa). Searches were directed to the correct corners as defined by
geometry, but the addition of a feature such as one colored wall did
not lead participants to narrow the choice to the correct corner.
Although human adults do use featural cues, Hermer-Vazquez,
Spelke, and Katsnelson (1999) argued that they do so only because
human language allows for the combination of the output of differ-
ent processing modules, a combination that they argued would not
be possible without language. In this view, young children and
non-human species share an ancestral geometric module for reori-
entation, later punctured by spatial language.

The modularity hypothesis has attracted much attention. But it
has become clear that it cannot account for many aspects of the
expanding data set on human reorientation and its development.
One prominent problem is the room-size effect. Geometry is more
likely to be used in small spaces and features are more likely to be
used in large spaces, for children (Learmonth, Newcombe, &
Huttenlocher, 2001, 2002), adults (Ratliff & Newcombe, 2008b),
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Table 1
Qualitative comparison of cue-combination and existing accounts of spatial
reorientation.

Property Modularity
hypothesis

Associative
model

Cue combination
model

Grounding
principle

Encapsulation
+language

Associative
learning

Probabilistic
inference

Role of learning Language only Central Not required for
humans

Role of language Dominant once
acquired

Unaccounted
for

Strategic cue

Number of free
parameters

Underspecified Relatively
high

Relatively low

Method of
evaluation

Empirical Fitting Fitting+cross
prediction
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fish (Sovrano, Bisazza, & Vallortigara, 2007), chicks (Chiandetti,
Regolin, Sovrano, & Vallortigara, 2007; Sovrano & Vallortigara,
2006; Vallortigara, Feruglio, & Sovrano, 2005), and pigeons (Kelly,
Spetch, & Heth, 1998). In addition, short-term experience with
the usefulness of a featural cue changes the behavior of young chil-
dren (Twyman, Friedman, & Spetch, 2007), human adults (Ratliff &
Newcombe, 2008a) and pigeons (Kelly & Spetch, 2004). Further,
rearing environment changes weighting of geometry and features,
at least for convict fish (Brown, Spetch, & Hurd, 2007) and mice
(Twyman, Newcombe, & Gould, 2013), although not chicks
(Chiandetti & Vallortigara, 2008, 2010). Cheng (2008) suggested
abandoning a modularity approach.

Other non-modular approaches to the development of human
reorientation have been proposed besides adaptive combination;
for an overview, see Cheng, Huttenlocher, and Newcombe (2013).
One computationally-specified non-modular approach uses an
associative learning model (Miller, 2009), based on a model origi-
nally formulated to explain reorientation data from non-human
animals (Miller & Shettleworth, 2007) to explain findings from
humans. In this account, cues compete with each other by gaining
or losing strength based on a variant of the Rescorla and Wagner
(1972) learning rule, adapted to encompass operant learning as
well as classical conditioning. This model has the great virtue of
precision in its assumptions about encoding and processing, and
it provides a good fit to a variety of data. However, the extension
of the original model to encompass human development relies
on age-related variations in learning rate, an assumption that does
not fit the developmental findings (Cheng et al., 2013). Studies
with children involve very few trials (often just 4), and do not find
better performance on the last trial than the first.

An alternative is to link the development of human reorienta-
tion to the development of cue combination, an idea suggested
previously (e.g. Newcombe & Huttenlocher, 2006) but not compu-
tationally specified or evaluated (Cheng et al., 2013). The purpose
of this paper is to specify such a computational model, and com-
pare it with the modular encapsulation-plus-language model. We
also compare it to the associative model, using the same set of data
examined by Miller (2009). We evaluate the generality of its
explanatory power by cross-predicting independent sets of empir-
ical data. We restrict our scope of investigation in this paper to the
development of reorientation in humans, and caution that it
remains to be determined whether the model also captures the
behavior of non-human species in the reorientation paradigm, for
whom operant learning may be more essential (Miller &
Shettleworth, 2007, 2008).

Table 1 summarizes the main differences between the proposed
model, the modular hypothesis and the associative learning model
of development. First, our model is grounded in the principle of cue
combination as a form of probabilistic inference, suggesting that
integration of information can occur from early in human develop-
ment (i.e. it does not depend on language to bridge between other-
wise hypothetically encapsulated modules). Second, our model
does not require (although it can accommodate) a process of learn-
ing, since it is responsive to internal uncertainty based on percep-
tion and memory processes; in comparison, in the modular
account, language learning is critical, as it then allows for modules
to be linked, and in the associative model, learning based on exter-
nal feedback is central to the reinforcement and suppression of
cues. Third, our model includes a potential role of spatial language
as a distinct cue that can exert an effect, but situates this effect
against a background of cue combination. Thus, the inclusion of
language as a strategic cue for reorientation differs from the posi-
tion of modularity theory (Hermer & Spelke, 1996; Hermer-
Vazquez, 1997), in that we suggest that language is not the only
way that information can be combined during reorientation;
rather, it acts as an independent cue that helps to reduce uncer-
tainty in reorientation. Fourth, we use a relatively small set of cues
and minimal free parameters. The associative model has a higher
number of cues and adjustable parameters, due to the fact that it
also parameterizes the learning process. Finally, we use a combina-
tion of fitting and cross-prediction to evaluate the models, which
provides a general, rigorous way of assessing model performances.
In the following sections, we show that this simple proposed cue
combination model accounts for existing empirical data.

The rest of this paper is organized as follows. We first illustrate
the idea of cue combination in informal terms. We then present
our computational model, which formalizes these ideas. We then
describe the sources of empirical data on which we draw, and pre-
sent three case studies in which we test our model against these
empirical findings, and compare the results to those of alternative
models.

2. Illustration of cue combination

Fig. 1 illustrates the overall concept of cue combination. Here
and elsewhere, we assume that a person is inside a closed space
(e.g. a room), has seen a target object being hidden in one of a finite
number of possible locations within that space (e.g. one of the cor-
ners of a room), and is then disoriented within that space. Their
task is to recover the target object after disorientation. For illustra-
tive purposes, suppose that there are two independent cues in this
reorientation task. Each cue provides some information about the
location of the target t�, which is fixed and located in one of four
possible locations. The height of the bars for the individual cues
represents the strength of each cue at each location, which varies
across the two cues. The taller bars correspond to locations that
a cue strongly predicts to be possible target locations. The shorter
bars correspond to non-target locations. Concretely, Cue 1 is a cue
based on surface geometry of the enclosure that predicts corners L2
and L4 as the most likely candidates for target location, because
these two corners are geometrically equivalent to the actual target
location (L2). Cue 2 relies on an explicit landmark—a wall painted
blue in this case—that predicts its adjacent corners L2 and L3
ambiguously as probable target locations, by virtue of association.
Although both cues provide some degree of information in deter-
mining the location of the target, neither is sufficient to predict
the target precisely. Thus, for a rational agent, an optimal strategy
would be to combine information from the two cues, which would
yield a substantially sharper response over the true target and
hence allow for reduction of uncertainty – reflected in a resulting
distribution of choice probabilities that peaks at the target
location.

3. Computational formulation of cue combination

Following standard formulations of cue integration (e.g. Ernst &
Banks, 2002), we model spatial reorientation as probabilistic infer-



Fig. 1. Illustration of cue combination in spatial reorientation. (a) Target t� is located at one of four discrete locations L1; L2; L3; L4 in an enclosure (birds eye view), shown
initially to and subject to retrieval by a person in the center of the enclosure who has been disoriented. (b) Two independent cues each provide some information concerning
the location of the target, but neither is sufficient to locate it fully. Cue 1 is based on surface geometry of the enclosure, and predicts L2 and L4 as the most probable locations of
the target (due to their geometrical equivalence under rotation). Cue 2 relies on a landmark—a colored wall represented by the thick line on the right of the room in panel
(a)—that predicts its adjacent corners L2 and L3 as probable locations for target. Although neither cue is fully predictive of the target location, combining information from the
two cues (shown as black bars) should increase certainty regarding target location, and accuracy of retrieval, compared with considering each cue in isolation. Bar height for a
given cue in the left panel represents the strength of that cue at each location. Bar height in the right panel represents the choice probability for each location as a result of cue
combination.

Fig. 2. Graphical representation of the combination model. t represents target
location. Primary cues are formulated in terms of how they arise from and thus
provide information about t : G for geometric cue, A for associative cue, P for
polarizing cue, L for language cue. Arrows indicate direction of causation.
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ence concerning a target location based on a set of independent
cues that the target has generated. Specifically, we model the loca-
tion of the target object t as generating four primary cues G;A; P; L
(see illustration in Fig. 2), and we model the agent’s belief concern-
ing the target location as inference from those cues to t.

More specifically, G (geometry) is informed by the geometric
shape of the space, e.g. the lengths of the walls, and the angles they
form where they meet. A (direct association) assumes the target is
located coincidentally or in the vicinity of a feature-bearing land-
mark, such as a corner with one white and one colored wall, so that
reorientation can be achieved by linking the target directly with
the presence of the wall and its location. P (polarization) assumes
that the agent has oriented, or polarized, the space using a distinc-
tive feature-bearing landmark, and encodes the location of the tar-
get object relative to the landmark. For example, one might locate a
coffee shop by remembering how it is situated relative to a bus
stop opposite the street, i.e. not directly neighboring it as in the
case of the A cue. In rectangular rooms, A and P cannot be disentan-
gled, because each corner is featurally distinctive (i.e., either all-
white or half-colored and half-white) but in rooms with more cor-
ners, it is possible to evaluate A and P separately. L (language) is the
ability to use spatial language to assist in locating the target. We
model language as an independent cue rather than as a tool for
bridging across modules because the language-as-bridge approach
cannot explain the room size effect, and we wish to determine
whether our adaptive cue combination view can account for such
data.

With the primary cues specified, we cast reorientation as prob-
abilistic inference over possible target locations given the com-
bined set of cues. Using Bayes’ rule, we express the posterior
belief concerning target location t as:

pðtjG;A; P; LÞ / pðG;A; P; LjtÞpðtÞ ð1Þ
In a novel environment, we assume a uniform prior pðtÞ on pos-

sible locations reflecting the fact that the participant would have
no a priori preference for one location over others. In a situation
where there is prior exposure or training in an environment, we
can update this posterior distribution by recursively incorporating
prior experience or history (discussed below).

The likelihood pðG;A; P; LjtÞ captures the probabilitiy of encoun-
tering a specific combination of cues G;A; P; L given that the target
is at location t. We assume that each cue contributes indepen-
dently to reorientation, and thus we further decompose the likeli-
hood by separating out the cues using this independence
assumption:

pðG;A; P; LjtÞ ¼ pðGjtÞpðAjtÞpðPjtÞpðLjtÞ ð2Þ
It is worth noting that although cues do not interact in the

above equation, their contributions are combined in influencing
the posterior belief. This formulation for the combination of inde-
pendent cues is drawn from the literature on perceptual cue inte-
gration (Ernst & Banks, 2002; Jacobs, 2002; Knill & Pouget, 2004;
Yuille & Bülthoff, 1996). This model setup is also consistent with
recent work on reorientation and navigation in ants (Collett,
2012; Cruse & Wehner, 2011; Legge, Wystrach, Spetch, & Cheng,
2014; Reid, Narendra, Hemmi, & Zeil, 2011; Wystrach, Schwarz,
Baniel, & Cheng, 2013).
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Each cue can be further decomposed into a likelihood function
that specifies how likely it is that the target t will appear in a cer-
tain location for that cue, weighted by a prior belief for the same
cue.

pðG;A; P; LjtÞ / f ðtjGÞpðGÞf ðtjAÞpðAÞf ðtjPÞpðPÞf ðtjLÞpðLÞ ð3Þ
For all of the analyses, we assume that priors on primary cues

are uniform, although our framework makes it possible to encode
prior preferences over cues. Thus what remains is to specify the
cue likelihood terms f ðtj�Þ.

For each cue, we represent its likelihood by a function that indi-
cates how likely the target is to be at each location, given that cue.
Because a likelihood function is not a probability distribution, val-
ues specified by this function need not sum to 1. Each cue likeli-
hood function encodes possible target locations predicted by a
cue as 1 (illustrated by the tall bars in the left panel of Fig. 1)
and non-target locations as a noise term d, capturing general cog-
nitive uncertainty (illustrated by the short bars in Fig. 1). For math-
ematical convenience we add noise only to the non-target
locations, thus retaining a maximum value of 1 for the likelihood
function; this is formally equivalent to the conceptually natural
idea of adding noise to all locations equally, and then rescaling
all bars proportionally so that the highest is of height 1. The noise
term d is assumed to decrease as a function of age, yielding increas-
ingly targeted, and decreasingly random, choices:

d ¼ 1
w� age

ð4Þ

We use a single weighting parameter w for all cues to specify
the inverse relationship between d and age: this parameter governs
the relative weighting of target and non-target locations. To allow
for the simplest design, we also assume that w is the same across
cues and is therefore the only free parameter in the model. Thus,
this model holds that children are more likely than adults to
receive noisy, uncertain information from any given cue, perhaps
due to factors such as attention or memory, capturing the qualita-
tive observation that younger children are more likely to make
incorrect and somewhat random choices overall concerning target
location.

For the G (geometry) cue, the likelihood function assigns a value
of 1 for a location i if that cue predicts location i as the target. Often
the G cue is not fully reliable since it predicts multiple locations as
potential targets, and for this reason, it may be desirable to com-
bine information from multiple cues.1 For example, when reorient-
ing in a rectangularly shaped room with a target at one of the four
corners, G has a value of 1 on the target corner and on the corner
diagonally opposite it, because those are the two locations that are
identical to the target location when considering only geometric
information. The likelihood also specifies a non-target component,
for each location not predicted by this cue, that scales inversely with
age subject to a multiplicative weighting parameter as described
above.

f ðt ¼ ijGÞ ¼ 1 ðif G predicts iÞ
d ðotherwiseÞ

�
ð5Þ

The likelihood of the A (associative) cue has a value of 1 on loca-
tions where a feature-bearing landmark coincides with the target.
For example, when reorienting in a rectangularly shaped room
with one of the four walls providing a feature or landmark (e.g.
painted blue), A has a value of 1 on each of two corners, because
the landmark is ambiguous about which of the two all-white cor-
ners, or which of the two half-blue corners, is the correct target if
1 Although the G cue is often unreliable in a controlled experiment with rectilinear
spaces, it can be fully predictive in nature.

2 Although it is possible that other cues are also affected by salience, here we
choose to model the effect of salience on the A cue only based on empirical evidence
from studies on the room-size effect.
only direct associative strategies are used. In addition, the strength
of the A cue depends on the salience of the landmark (e.g. the sal-
ience of the colored wall). This component would be perfectly
informative in a high-salience condition, but uninformative in a
low-salience condition. This dependence on salience is motivated
by previous findings that a small enclosure can degrade reorienta-
tion performance despite the presence of a landmark feature, espe-
cially in very young children (Hermer & Spelke, 1996).2 We assume
that small room size reduces the salience of the landmark feature, a
choice we will discuss further after presenting the data and model-
ing. We formalize this interaction between salience and the A cue
using a probabilistic OR.

f ðt ¼ ijAÞ ¼ 1� ð1� sÞð1� dÞ ðif A predicts iÞ
d ðotherwiseÞ

�
ð6Þ

Here s represents salience and can range from 0 (no salience) to
1 (full salience). When s is 0, this likelihood function is entirely flat
and uninformative. Here, the salience parameter s is assumed to be
0 in a small room (area no greater than 24 square feet, motivated
by previous work by Hermer & Spelke (1996)), and 1 otherwise.
This binary assumption is made for simplicity, but future work
should systematically explore independent empirical measures of
landmark salience for rooms of different sizes. The parameter w
for the d term here and for other cues below is the same as for
the G cue.

The likelihood of the P (polarizing) cue assigns 1 on the true tar-
get location under the assumption that the landmark object can
polarize the space and orient the participant towards one of the
corners.

f ðt ¼ ijPÞ ¼ 1 ðif P predicts iÞ
d ðotherwiseÞ

�
ð7Þ

The likelihood of the L (language) cue depends on the availabil-
ity of spatial language:

f ðt ¼ ijLÞ ¼ 1� ð1� aðLÞÞð1� dÞ ðif L predicts iÞ
d ðotherwiseÞ

�
ð8Þ

This cue points to the target and becomes available when an
agent is fluent and has access to relevant spatial language, which
is determined by the function aðLÞ. This function ranges from 0
(no access to spatial language) to 1 (full access). We assume a value
of 0 (no access) for participants under the age of 6, a value of 1 (full
access) for those who are 6 years of age or older and who are not
experimentally prevented from using language (e.g., by a concur-
rent verbal interference task), and a range of values between 0
and 1 for participants 6 years of age or older who are being exper-
imentally prevented from using language. These assumptions are
motivated by previous work suggesting that spatial language helps
children of age 6 but not younger in reorientation (Hermer-
Vazquez, Moffet, & Munkholm, 2001; Hermer-Vazquez, 1997)
and by work on auditory shadowing (Hermer-Vazquez et al.,
1999). In our studies below, we test the hypothesis that the
assumptions we have made here, together with general principles
of probabilistic inference, account for human reorientation behav-
ior across a range of published experiments.

4. Data

To assess our model, we used empirical data from several exist-
ing published sources. We chose these data sets to cover the
breadth of phenomena reported in the reorientation literature



Table 2
Summary of data sets used in our three case studies. LNN02: Learmonth et al. (2002);
HS96: Hermer and Spelke (1996); RN08a: Ratliff and Newcombe (2008a); NRST10:
Newcombe et al. (2010); RN08b: Ratliff and Newcombe (2008b).

Case Phenomenon Theoretical Source
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while maintaining analytical consistency across studies; for exam-
ple, we restricted our analysis to experimental conditions where
the landmark is close to a wall. Table 2 summarizes the phenom-
ena and empirical data relevant to our analyses and their theoret-
ical implications.
implication

1 <6 yrs fail to use landmark in
small enclosure

Enclosure size matters LNN02;
HS96

Adults perform worse under
verbal shadowing

Spatial language helps
reorientation

RN08a;
HS96

2 <6 yrs use distant landmark to
reorient

Polarization is
important for
reorientation

NRST10

3 Adults trained in large enclosure
favor landmark

Experience and
enclosure size interact

RN08b
5. Model evaluation and results

We evaluate our model in three independent test cases. First,
we examine how well our model accounts for data in reorientation
tasks in a rectangular room, when association and polarization
cues cannot be distinguished because targets are always spatially
coincident with a feature-bearing landmark. We compare our com-
bination model both to the associative learning model for human
reorientation (Miller, 2009) and to baseline single-cue models that
do not use cue combination. We begin in case study 1 by fitting our
model to data from children in a standard reorientation task,
thereby obtaining an estimate of the one model parameter, which
governs the rate at which uncertainty decreases with age. To assess
the generalizability of our model in a predictive way, we then
apply our model to predict data from adults in a similar experi-
ment, and subsequently to data from an independent set of tasks
involving verbal interference, polarizing cues, and cue conflict
under prior experience, in case studies 2 and 3, all using the fitted
parameter value from the first step.
5.1. Case study 1: Cue combination in a rectangular enclosure

We first assess whether our proposed combination model can
account for data from rectangular rooms. We draw on a represen-
tative data set that spans several age groups (Learmonth, Nadel, &
Newcombe, 2002). This set was used by Miller (2009), so we can
directly compare our model results to Miller’s.

The experimental procedures are described fully in Learmonth
et al. (2002); we describe them briefly here. All experiments were
carried out in an enclosed rectangular room. The size of the room
differed across two conditions: large (8� 12 ft) and small
(4� 6 ft). In both cases, one of the shorter walls had a blue curtain
that served as a landmark (the ‘‘blue-wall condition”). Fig. 3a illus-
trates this experimental setup. The target was placed at one of the
four corners for a given participant. The four corners of the room
were referred to as the C (correct), R (rotationally identical or
invariant), N (near) and F (far) corners. Three groups of children
from 3 to 6 years of age participated in the reorientation task. In
each trial, participants were shown the target location, disoriented
and then asked to point to the target. Fig. 3b-c shows the average
empirical choice probabilities, along with model fits as described
below.

We modeled these data using our cue combination model as
follows. The G cue was encoded by a likelihood function that
includes C and R corners as possible targets. This captures the fact
that the C and R corners are geometrically identical or rotationally
invariant (Hermer & Spelke, 1996); thus geometry ambiguously
predicts target location. The A cue encodes C and N as possible tar-
gets. This captures the fact that the target and its nearest corner
coincide either with the landmark blue wall, or not. However,
the likelihood of the A cue is dependent on salience, which in this
case is assumed to be determined by room size. We make the sim-
plifying assumption that in the small room, salience s = 0; in the
large room, salience s = 1. The P cue is not present (i.e. its likelihood
is uniform) because the landmark coincides with the target. For the
L cue, we assumed full access to spatial language (LðaÞ ¼ 1) for par-
ticipants 6 years of age or older who were not under verbal inter-
ference, no access to spatial language (LðaÞ ¼ 0) for participants
under 6 years of age, and an intermediate value of LðaÞ for partici-
pants 6 years or older who were under verbal interference. The
only free parameter in the model is w, which determines how
quickly general cognitive uncertainty decreases as a function of
age. We fit this parameter to the data through grid search by incre-
mentally varying the value between 0.01 and 1 in steps of 0.01.
Specifically, we iteratively generated model-estimated choice
probabilities for each value of the parameter. We then identified
the parameter value that yielded the minimal mean squared error
between model-estimated choice probabilities and the empirical
data. We found the optimal parameter value to be 0:694 and held
that parameter fixed in the current analysis and in all upcoming
predictive analyses.

We compared the choice probabilities estimated from our com-
bination model to those from Miller’s (2009) associative model
(see model specification in Supplementary Materials), as well as
a baseline model that involves only the G cue and a second baseline
model that involves only the A cue, with the same likelihood spec-
ifications as in the combination model but neither enabling cue
combination. Fig. 3b-c summarizes the results. In the large-room
condition (Fig. 3b), performance is almost indistinguishable
between the combination (r2 ¼ 0:98) and Miller’s (r2 ¼ 0:97) mod-
els, and both outperformed the baseline models (r2 ¼ 0:41 for
G-cue model and r2 ¼ 0:30 for the A-cue model). This result is
expected because in the large room, the language cue L (which is
absent from Miller’s model) is redundant given jointly the associa-
tive cue A and geometrical cue G (both of which are present in Mill-
er’s model as associative cues), since both cues correctly point to
the target in combination; thus both of these models have this crit-
ical information, and the baseline models lack them because nei-
ther geometry nor direction alone is sufficient to pick out the
correct target. In the small-room condition (Fig. 3c), both Miller’s
(r2 ¼ 0:73) and two baseline (r2 < 0:55) models perform poorly
in explaining the data, but our proposed model accounts for the
choice pattern substantially better (r2 ¼ 0:97). In particular, Mill-
er’s model predicts higher choice probability on the correct corner
than other corners for all age groups, and hence it fails to predict
the qualitative difference in performance between age groups
< 6 and ¼ 6. On the other hand, both the G-cue model and the A-
cue model fail to capture the superior performance in age group
6 altogether. This is because neither of these models captures the
presumed influence of language when salience is weak in the small
room. Our model, however, does explicitly capture this interaction
between language and salience, and best explains these empirical
findings that contrast reorientation performance across ages
between large and small enclosures.

To further assess our model, we used the parameters estimated
from the previous experiment to predict data from a separate
study conducted with adults (Ratliff & Newcombe, 2008a). We took
adults’ age to be 18 and used the same parameter value for w from
the previous analysis. The specific paradigmwe tested is consistent



Fig. 3. Summary of analyses on cue combination in children. (a) Large and small rectangular rooms (not-to-scale) used in the experiments by Learmonth et al. (2002). t⁄

marks target location. (b) Empirical (standard errors were not provided in Learmonth et al. (2002) and thus are not shown here) and model-estimated choice probabilities
from children for the large room. (c) Similar choice probabilities for the small room
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with the blue-wall experiment described earlier: adults were dis-
oriented in identically sized large and small rooms. However in this
study, one of the conditions involved verbal shadowing, intended
to render language partially inaccessible during reorientation
(see also Hermer-Vazquez et al., 1999). Fig. 4 (first column) pre-
sents data from Ratliff and Newcombe (2008a). It can be seen that
verbal shadowing appears to somewhat reduce the rate of correct
responding, and that this reduction is (significantly) smaller in the
large room than in the small room. We interpret the greater resili-
ence of correct responding under verbal shadowing in the large
room as resulting from the greater salience of the landmark in
the large room (supporting the A cue), despite the experimentally
induced degradation of the L (language) cue in both conditions.
Fig. 4 (columns 2 onwards) presents the response patterns pre-
dicted by the same three models described above. To obtain these
results, we varied the availability of language aðLÞ in the L cue over
the range 0–1 (in steps of 0.1) to capture different degrees of lan-
guage inaccessibility, effectively marginalizing out the possible
values that aðLÞ can take; the bar graphs for the combination model
in the shadowed condition show the average prediction within that
range. In contrast bar graphs in the No-shadow condition were
obtained by assuming full access to spatial language (aðLÞ ¼ 1).
Our model again outperforms (r2 ¼ 0:98) all the competing models
(r2 < 0:1) by capturing the interaction between salience (here,
room size) and language, whereas the competing models do not
account for this interaction.

To assess the model performances, we also compared the log
likelihood of model fits to the empirical data. We used log likeli-
hood instead of Akaike information criterion or Bayesian informa-
tion criterion because our model used fewer parameters than the
associative model in general (and it used an equal number of
parameters with respect to other baseline models), and hence it
has lower complexity. Table 3 compares both log likelihoods and
number of free parameters among the different models - our model
yields better performances while having minimal complexity
under all conditions in this case. Taken together, these two sets
of results suggest that our cue combination model accounts well
for these reorientation data.

5.2. Case study 2: Cue combination in an octagonal enclosure

We next assess whether our model also accounts for cue com-
bination beyond a rectangular enclosure. In particular, we focus
on polarizing cue combination in an octagonal enclosure, as
reported by Newcombe, Ratliff, Shallcross, and Twyman (2010).

In this set of experiments, the reorientation task was conducted
in an octagonal room. Similar to the previous experiments, one of
the walls had a red curtain that served as a landmark. However



Fig. 4. Summary of analyses on cue combination in adults. (a) Empirical and model-estimated choice probabilities under control and verbal-shadowing conditions for the
large room. Thin vertical lines represent standard errors from Ratliff and Newcombe (2008a). (b) Analogous choice probabilities for the small room.

Table 3
Summary of model performances across three case studies. Best score in each row is shown in bold.

Case Condition (group) Log likelihood (# distinct params)

1 Combination Miller’s G-cue A-cue
Large rectangle (children) �5.26 (1) �5.66 (4) �8.47 (1) �8.66 (1)
Small rectangle (children) �5.09 (1) �7.47 (4) �7.59 (1) �8.31 (1)
Shadowing (adult) �6.69 (1) �10.57 (4) �10.04 (1) �10.04 (1)

2 Combination Miller’s G-cue P-cue
Polarizing (children) �5.22 (1) �6.57(4) �6.88 (1) �7.29 (1)

3 Combination Combination (flat prior) G-cue A-cue
Experience-based (adult) �6.87 (1) �8.75 (1) �10.17 (1) �7.58 (1)

3 We assumed w to be fixed across experiments to support a fully predictive
nalysis. However, we confirmed that there exist w values that give better fits to the
rrent study, suggesting w might be different under rectangular and octagonal

conditions.
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in contrast with the previous experiments, the target location did
not coincide with any of the corners covered by the landmark,
but instead was one of the distant corners as illustrated in Fig. 5a
(leftmost panel). In other words, successful reorientation in this
case would depend on mapping from a distant landmark to a tar-
get, or direction. The room was 75 square feet in area, which is
close to the size of the previous large rectangular room. Two of
the corners (GW) were geometrically identical to the correct corner
(C). One corner (GF) was both geometrically identical and coincides
with the featured landmark. The remaining three corners were
error corners (EW). Two groups of children (ages 3 and 5) partici-
pated in the experiment. Fig. 5b (right 2 panels) shows the empir-
ical choice probabilities, and model predictions of them.

We used the combinationmodel to predict these empirical data.
Specifically, the G cue encodes geometrically invariant corners
(C;GF;GW and GW) as possible targets and non-targets elsewhere.
The polarizing P cue encodes C as the possible target. The L cue is
uninformative in this case because both age groups for the octag-
onal experiments are below 6, which we assume means that lan-
guage is unavailable, yielding a flat likelihood for the L cue. To
allow for a fully predictive (parameter-free) assessment, we used
thew values for 3- and 5-year-olds from the blue-wall experiments
(our study 1), which are independent of the current analysis.3

We compared our combination model against two baseline
models that incorporate either the polarizing cue alone, or the geo-
metrical cue alone, with no cue combination. Fig. 5b summarizes
the predicted choice probabilities from all three models. These
results show that our combinationmodel (r2 ¼ 0:90) predict empir-
ical data across two age groups better than Miller’s model
(r2 ¼ 0:80) and both the G-cue (r2 ¼ 0:35) and P-cue (r2 ¼ 0:84)
baseline models. The P-cue only model cannot distinguish between
geometrically identical corners and error corners, so it predicts
equal choice probabilites over those corners. The geometry-only
model cannot distinguish between the correct corner and geomet-
rically equivalent corners, so it under-predicts choices on the tar-
get. Table 3 further shows that our model yields better log
likelihood than competing models. In sum, this set of results sug-
a
cu



Fig. 5. Summary of analyses on directional cue combination. (a) Octagonal room used in the experiments by Newcombe et al. (2010). (b) Empirical and model-predicted
choice probabilities for 3- and 5-year-olds. Thin vertical lines represent standard errors.
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gests that children combine directional information with geometry
in spatial reorientation, which extends beyond an associative
account and provides further evidence for a cue-combination view.

5.3. Case study 3: Cue combination from experience

Finally, we assess our model in a reorientation experiment that
involves prior experience. We focus on a cue-conflict paradigm
based on experimental data reported by Ratliff and Newcombe
(2008b).
Fig. 6. Summary of analyses on cue combination that incorporates experience. (a) Train
(2008b). (b) Empirical and model-predcited choice probabilities in the same-room con
represent standard errors.
In these experiments, the reorientation tasks were conducted in
rectangular rooms with sizes (small or large) identical to those in
Learmonth et al. (2002). Differing from the previous experiments,
however, these tasks involved a training phase and a separate test-
ing phase. During training, the experimenter would hide a target
object in one of the four corners. Meanwhile, a landmark (a remov-
able piece of bright colored and patterned fabric) would be placed
close to that target location. Throughout training, the target would
be hidden in the same corner, and participants would be disori-
ented and asked where the target was hidden. During testing, the
ing and testing procedures of the cue-conflict paradigm in Ratliff and Newcombe
dition. (c) Choice probabilities in the switched-room condition. Thin vertical lines
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participants would be taken out of the room while the experi-
menter went back in and switched the landmark to the adjacent
wall. Participants were then blindfolded and led back into the
room for the test. After the disorientation procedure, participants
were asked to point to the corner where they thought the target
object was located. Fig. 6a illustrates this paradigm. Note that
due to the shift of the landmark, the geometry and landmark cues
would be in conflict with each other during the test. In particular,
geometry would point to two G (see right panel in Fig. 6a) corners
as potential target locations, whereas landmark would point to L;
the remaining corner is labeled E (error). The experiments involved
two conditions. In the same-room condition, the training and test-
ing rooms were of the same size. In the switched-room condition,
the training and testing rooms were of different sizes (either small
or large). Adults of age around 18 participated in the study. Fig. 6b
and c show the empirical choice probabilities, and model predic-
tions of them.

We used our combination model to predict these data as fol-
lows. To incorporate the training experience in the inference of tar-
get locations, we used recursive posterior updating. Specifically,
Eq. (1) can take into account history, or training experience:

pðtjcuesÞ / pðcuesjtÞpðtjcues0Þ ð9Þ
Here, pðcuesjtÞ is the likelihood that specifies cues in the testing

phase. cues0 refer to cues in the training phase, and the prior for the
testing phase pðtjcues0Þ is obtained from the posterior in the train-
ing phase:

pðtjcues0Þ / pðcues0jtÞpðtÞ ð10Þ

pðtÞ is the prior in the training phase that is assumed to be uniform,
i.e. there is no preference towards any location before the training.

The model thus makes predictions about target choice during
testing. We specified the likelihoods for the G;A, and L cues accord-
ing to Eqs. (4)–(7): G cue encodes the two G corners as possible tar-
gets; A cue encodes the L corner as the target (i.e. in conflict with G
cue) in the large room and is uninformative (flat) in the small
room; L cue encodes the L corner as the target; P cue has a uniform
likelihood (as in study 1). For the same-room condition, many par-
ticipants noticed that the landmark had shifted from training to
testing (as reported in Ratliff & Newcombe (2008b)). For this rea-
son, they were likely to consider the landmark an unreliable fea-
ture, although the exact degree of reliability of this cue might
vary across participants. To capture this observation, we took into
account varying degrees of uncertainty in the likelihood function
by marginalizing out the w parameter such that the non-target-
to-target ratio covers the range from 1:1 (where a cue is com-
pletely flat or uninformative) to 1:10 (the lowest target-to-non-
target ratio as predicted by the model informed by the empirical
data in study 1) in incremental steps of 1 in landmark-relevant
cues A and L. We then took the average model prediction within
this range, effectively marginalizing out the free parameter.

We compared the choice probabilities predicted from our com-
bination model to models that do not incorporate cue combination.
We did not include the associative learning model because its orig-
inal formulation did not specify how to incorporate rapid history
effects in this context. Fig. 6b and c summarize these results. Over-
all, the combination model makes accurate predictions about the
empirical data (r2 ¼ 0:93). It captures the phenomenon that expo-
sure to the large room (regardless of whether during training or
testing) leads to a preference towards the landmark corner L,
whereas an exclusive exposure to the small room reduces the
choice probability at L and increases the probabilities at the geo-
metric corners G. The combination model predicts these data bet-
ter than competing models that incorporate only the associative A
cue (r2 ¼ 0:86) or geometry G cue (r2 ¼ 0:09) across all conditions,
again supporting the cue-combination view. Finally, to verify that
prior experience did play an important role in model prediction,
we ran a version of the combination model with a uniform prior
on target locations in the testing phase (not shown in the figure).
This yielded a performance (r2 ¼ 0:53) that is substantially worse
than the version with prior incorporated. Table 3 shows that our
model outperforms all competing models.

Together, this set of results supports the cue-combination view
and points to an interaction of enclosure size and reorientation his-
tory, both of which serve as important factors in the strategic
choice of target.
6. Discussion

We have presented a probabilistic model of the development of
human spatial reorientation based on cue combination. Our model
accounts for existing data better than modularity or associative
models, across different enclosure sizes and shapes, different age
groups, different task demands, and different landmark configura-
tions. Several aspects of this model deserve discussion.

First, we treat language as an independent cue, not as a tool for
combining information from other cues. This treatment differs
from the modular approach. Our treatment of language as a cue
among others, rather than as a tool for combining information
from other cues, receives some independent support from the find-
ing of Shusterman, Lee, and Spelke (2011) that non-specific task-
relevant language can help young children in the reorientation
paradigm (e.g., the red wall can help you find the sticker), and from
the finding of Dessalegn and Landau (2013) that any asymmetrical
language aids in capturing directional spatial relations (e.g., the red
is prettier than the blue, as well as the red is left of the blue).

Second, we did not explicitly model learning in children,
because such effects have been found to be minimal in the devel-
opmental literature. However, we did demonstrate that our model
is capable of capturing prior experience in adults (in case study 3),
which is a particular form of learning that could be qualitatively
different from those observed in other non-human species - where
repeated trials are essential to successful spatial reorientation. It
remains an open question why children show minimal learning
in existing spatial reorientation experiments, and how they might
behave in experiments where more trials are given or when cues
are placed in conflict, as in the case study with adults.

Third, we should note that the current model treats separately
changes due to age (modeled by decreasing cognitive uncertainty
with age) and changes due to short-term experience (modeled by
recursive updating). An open question for future research is
whether decreases in uncertainty with age may also be attributa-
ble to experience, accumulated over developmental time rather
than over the short run, yielding a simpler overall account. An
alternative is that age-related decreases in uncertainty are due to
more general aspects of cognitive development, such as better
executive control of attention and retrieval. Another aspect of the
model that could be adjusted involves the capacity to combine
information, which may also change with age, e.g. factors such as
hippocampal maturation could act to allow increasing ease in com-
bining information from various cues as children get older (Sutton
& Newcombe, 2014). Indeed, developmental research regarding
combination in other kinds of spatial problems has shown an
extended period of development (Nardini, Burgess, Breckenridge,
& Atkinson, 2006, 2015; Waismeyer & Jacobs, 2013).

Finally, we modeled the room-size effect by varying the salience
of the featural cue rather than the salience of the geometric cue.
Previous discussion of the room size effect has included sugges-
tions that geometric cues may be more noticeable in smaller rooms
(Twyman, Nardi, & Newcombe, 2013). However, an approach that
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varied the salience of geometry would have difficulty in accounting
for the continued dominance of the reversal error over the near and
far errors in larger rooms where the frequency of the correct choice
increases sharply.

Our model was developed to account for human data, and fur-
ther work would be needed to extend it to evaluate data from
non-human species, and from other paradigms with humans. In
contrast, the associative model (Miller & Shettleworth, 2007) was
originally developed to account for findings from non-human ani-
mals who require lengthy learning periods in typical experimental
paradigms, and was later extended to account for human data
(Miller, 2009). Clearly, a model for non-human species would not
use our independent language factor, and there may be other
species-specific aspects to reorientation, as suggested by Cheng
et al. (2013). Further work is needed to determine which of the
principles we have explored here generalize across species, and
how.

The work we have presented here has helped to account for
empirical findings in human spatial reorientation in children and
adults—often considered puzzling—under the principle of adaptive
cue combination, a proposal that has not previously been compu-
tationally specified or tested with respect to these phenomena.
The model is grounded in the extensive literature on perceptual
cue integration and memory for spatial location, thus suggesting
that human spatial reorientation may be an instantiation of opti-
mal behavior under uncertainty.
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