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Abstract: Semantic maps are a means of representing universal structure underlying cross-
language semantic variation.  However, no algorithm has existed for inferring a graph-based 
semantic map from data.  Here, we note that this open problem is formally identical to the 
known problem of inferring a social network from disease outbreaks.  From this identity it 
follows that semantic map inference is computationally intractable, but that an efficient 
approximation algorithm for it exists.  We demonstrate that this algorithm produces sensible 
semantic maps from two existing bodies of data. We conclude that universal semantic graph 
structure can be automatically approximated from cross-language semantic data. 
 
Keywords: semantic universals, semantic maps, language and cognition 

 
 

1. Introduction 
 

Languages vary in their semantic categories – that is, in the range of semantic functions or uses 
picked out by their linguistic forms. However, many possible semantic categories are not 
attested, and similar categories often appear in unrelated languages. This pattern of constrained 
variation suggests a universal conceptual basis underlying the variation, such that different 
languages provide different snapshots of the same conceptual terrain. A SEMANTIC MAP is a 
means of capturing this idea, representing both presumed universal structure and language-
specific partitionings of that structure.   
 
A semantic map often takes the form of a discrete graph structure (e.g. Bybee, Perkins, & 
Pagliuca, 1994; van der Auwera & Plungian, 1998; Haspelmath, 1997).  More recently semantic 
maps based on continuous representations have also been proposed (e.g. Croft & Poole, 2008; 
Cysouw, 2001; Cysouw, 2007; Levinson, Meira, & the language and cognition group, 2003; 
Majid, Boster, & Bowerman, 2008).   In both traditions, the inferred underlying structure is 
sometimes interpreted as capturing the conceptual similarity between different semantic 
functions (e.g. Croft, 2003; Croft & Poole, 2008); in other work, no such attribution is made, 
and a semantic map is viewed simply as a compact description of attested variation, leaving 
open the possibility that the structure of the map may reflect extra-cognitive, such as diachronic 
or communicative, factors (e.g. Bybee, Perkins, & Pagliuca, 1994; Cristofaro, 2010).  A carefully 
neutral statement of the purpose of a semantic map is that it attempts to “visually represent 
cross-linguistic regularity in semantic structure” (Cysouw, Haspelmath, & Malchukov, 2010: 1).  
In this paper, we use the term semantic map to refer specifically to graph-based maps, and we 
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do not assume that the structure of the graph must necessarily accurately reflect cognitive 
reality – although we agree with Croft (2010) that it is likely to often do so. 
 
Formally, a (graph-based) semantic map is a graph in which vertices (nodes) represent semantic 
functions or uses, and edges (links) connect closely related semantic functions.  For a given 
semantic map, the semantic functions and the connections between them are assumed to be 
universal. The meaning of a given linguistic form is then represented as a language-specific 
grouping of vertices into a CONNECTED REGION of the universal graph. 
 

 
 
 

Figure 1. A semantic map of typical dative functions, with the semantic range of English to 
shown in dotted outline. French à is similar to English to, but excludes PURPOSE and includes 

PREDICATIVE POSSESSOR. From Haspelmath (2003: 213). 
 

An example is shown in Figure 1. This semantic map, from Haspelmath (2003: 213), shows a set 
of typical semantic functions of the dative, and also shows the semantic range of the English 
word to as a connected subset of this universal graph. This to subset comprises the functions 
DIRECTION (e.g. She went to Philadelphia), RECIPIENT (e.g. He gave the book to his sister), 
EXPERIENCER (e.g. That seems loud to me), and PURPOSE (e.g. I did it to see what would happen). 
French à occupies an overlapping but distinct connected subset, and forms from other 
languages occupy yet other connected subsets. The SEMANTIC MAP CONNECTIVITY HYPOTHESIS 
(Croft, 2003: 134) is the proposal that language-specific categories will always pick out 
connected subsets of the graph.  For example, given the semantic map in Figure 1, this 
hypothesis predicts that any linguistic form that expresses both RECIPIENT and PURPOSE will also 
express DIRECTION, since any connected region containing both RECIPIENT and PURPOSE must 
also include DIRECTION. 
 
This hypothesis captures the widely-shared intuition that linguistic categories denote connected 
regions of conceptual or perceptual space: cf. Nerlove and Romney’s (1967) observation that 
languages tend to avoid disjunctively defined kinship categories, and Roberson’s (2005) notion 
of ‘grouping by similarity’ in color naming. Once a semantic map has been constructed to fit a 
body of cross-language data, the expectation is that new categories from as-yet-unexamined 
languages will also pick out connected subgraphs – possibly novel connected subgraphs. A 
semantic map thus compactly represents what patterns of variation one may and may not expect 
to find in a given semantic domain, and the underlying graph has been taken to represent “a 
common human cognitive heritage” (Croft, 2003: 139). Semantic maps have been widely used to 
represent cross-language semantic variation over a presumably universal base; for recent 
reviews see Haspelmath (2003) and Cysouw, Haspelmath, and Malchukov (2010) plus other 
papers in the same volume. 
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The task of constructing a semantic map in graph form from cross-language data is generally 
done by hand, and the task can be time-consuming with moderate to large-sized datasets. It 
would therefore be useful to automate this process; however the computational problem of 
inferring such a universal semantic map from cross-language data has not been formally 
addressed. Croft and Poole (2008) conjectured that this problem may be computationally 
intractable, and they considered this potential intractability to be a shortcoming of graph-based 
semantic maps as a representational tool in semantic typology.  In contrast, a continuous map 
may be straightforwardly inferred from data using well-known computational techniques such 
as multidimensional scaling, and this fact has been held to be an advantage of continuous over 
graph-based representations for semantic maps (Croft & Poole, 2008; Cysouw, 2001; Wälchli, 
2010).    Here, we address the SEMANTIC MAP INFERENCE problem in formal terms, in the 
previously unexplored case of graph-based semantic maps. 
 
In what follows, we first note that the semantic map inference problem is formally identical to 
another problem that superficially appears unrelated: inferring a social network from outbreaks 
of disease in a population. Angluin, Aspnes, and Reyzin (2010) have recently shown that this 
social network inference problem is computationally intractable, but that an efficient algorithm 
exists that approximates the optimal solution nearly as well as is theoretically possible; it follows 
that both the computational intractability and the applicability of the approximation algorithm 
hold of semantic map inference. We then apply this algorithm to the cross-language data of 
Haspelmath (1997) on indefinite pronouns, and of Levinson, Meira, and the Language and 
Cognition Group (2003) on spatial categories, in both cases yielding sensible and useful results. 
We conclude that presumptively universal structure consistent with cross-language semantic 
data can be straightforwardly inferred, that the issue of computational intractability—while 
real—need not deter researchers, and that formalization of problems in semantic typology can 
highlight useful connections to structurally related problems elsewhere. 

 
 

2. The semantic map inference problem 
 

The semantic map inference problem can be stated informally as follows. We are given a set of 
semantic functions or uses within a particular semantic range (e.g. RECIPIENT, PURPOSE, 
DIRECTION, etc. from the range of the dative, as in Figure 1).  We are also given a set of groupings 
of these functions into semantic categories from various languages; each such grouping picks 
out the semantic functions that may be expressed by a given linguistic form (e.g. the functions of 
English to shown in dotted outline in Figure 1).  We assume that each such category picks out a 
connected region of an underlying universal network of semantic functions, but we are not given 
the connections of that network.  Instead, we wish to INFER the set of connections between 
semantic functions that best explains the observed semantic categories. 
 
This problem can be formalized as follows, illustrated in Figure 2. Given a set V of vertices 
(representing semantic functions), and a set of constraints Si ⊆ V (representing a set of 
language-specific groupings of these functions into categories), we wish to find the minimum set 
of edges E between the vertices of V such that each Si picks out a connected subgraph of the 
graph G=(V,E). By asking for the minimum set E we avoid trivial and uninformative solutions 
such as those in which all vertices are connected.  Moreover, because edges are inferred rather 
than directly observed, the existence of each edge must be assumed; this means that by 
minimizing the number of edges, we minimize the number of assumptions made, and thus 
privilege parsimonious solutions to the problem. 
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Figure 2. Formalization of the semantic map inference problem.   We are given a set of semantic 
functions (vertices V, shown as small circles), and groupings of these functions into language-
specific categories (constraints Si ⊆ V, each shown by a dashed outline).  We seek the minimum 
set of edges E (shown as links between vertices) such that each grouping picks out a connected 

region of the overall graph G=(V,E). 
 

Angluin et al. (2010) treated a formally identical problem. They wished to infer a social network 
from observations of disease outbreaks in a population. Thus vertices V now represent people, 
and each constraint Si ⊆ V represents the subset of people observed to have been affected by a 
particular disease outbreak i.  For example, a particular Si might represent the set of people 
observed to have caught a cold last November. Angluin et al. (2010) assumed that disease is 
spread by social contact, and they represented social contact between two people as an edge 
between the corresponding two vertices. They wished to find the social network that could best 
account for the observed outbreaks – that is, the minimum set of edges E such that each 
constraint Si picks out a connected subgraph of the overall social graph G=(V,E).  This social 
network inference problem is formally the same as the semantic map inference problem; 
therefore any formal results concerning one also apply to the other.1  (See also Dahl (2001: 1469) 
for a different disease analogy concerning grammaticalization.) 
 
Some problems can be shown to be computationally intractable, in the sense that it is expected 
that there does not exist an efficient algorithm that will always find the optimal solution (Garey 
& Johnson, 1979). If a problem is computationally intractable in this sense, it is natural to 
abandon the search for an optimal solution and to ask instead whether an approximation to the 
optimal solution can be found efficiently. For some problems it can be shown that even this 
fallback goal of approximation is hard (e.g. Trevisan, 2004; Vazirani, 2001, ch. 29), meaning 
that there exists a value r such that no efficient algorithm can be expected to always 
approximate the optimal solution to within a factor of r. Angluin et al. (2010) showed that the 
social network inference problem is hard to approximate in this sense; therefore the same holds 
of the semantic map inference problem. This result confirms Croft and Poole’s (2008) suspicion: 
the semantic map inference problem is indeed computationally intractable, and moreover is 
hard to approximate. However, this finding leaves open the possibility that an efficient 
algorithm may nonetheless produce approximations that are of high enough quality to be useful. 
                                                
1
 Angluin et al. (2010) considered several variants of the social network inference problem.  The specific 

variant to which we refer here is the one they label the offline uniform cost network inference problem; it 
corresponds to traditional graph-based semantic maps with unweighted edges.  Other variants discussed 
by Angluin et al. (2010) are applicable to the suggestion (Cysouw, 2007: 233) that edges in semantic 
maps may usefully be weighted, to capture how often a given pair of semantic functions co-occurs. 



INFERRING SEMANTIC MAPS 5 

 
 

3. The network inference algorithm  
 

Angluin et al. (2010) presented an efficient algorithm for the social network inference problem 
and proved that it approximates the optimal solution nearly as closely as theoretically possible.   
Following the statement of the inference problem above, their algorithm is given a set V of 
vertices (which in the case of semantic map inference represent semantic functions), and a set of 
constraints Si ⊆ V (which in the case of semantic maps represent a set of language-specific 
groupings of these functions into categories).  It begins with no edges E between the vertices.  It 
then introduces edges one by one in order of their UTILITY (specified below), until each 
constraint Si picks out a connected region of the overall graph.  
 
Informally, the utility or usefulness of a proposed edge is the extent to which it contributes to 
the overall goal of the algorithm, namely a graph in which each constraint Si picks out a 
connected region.  For example, in Figure 2, it is visually clear that the already-inserted edge in 
the upper right portion of the graph (call it e) contributes to the connectedness of two 
constraints, whereas other already-inserted edges and other possible edges (not shown) each 
contribute to the connectedness of one constraint or no constraints.  For this reason, beginning 
with no edges at all, e would have the highest utility and would be the first edge to be 
introduced.  
 
This informal notion is captured formally by Angluin et al. (2010) by relying on the notion of a 
CONNECTED COMPONENT.  A connected component of a graph is a maximal connected subgraph – 
that is, a connected subgraph to which no further vertices may be added without losing this 
connectedness.  Consider again the graph in Figure 2.  Prior to any edges having been inserted, 
the initial graph (consisting only of vertices) would have had 4 connected components, one 
corresponding to each vertex.  The same graph but with only the above-identified edge e 
inserted, and no other edges, would have 3 connected components: one component consisting of 
e and the two vertices it connects, and one component for each of the two remaining vertices.  
Finally, the graph as it is shown contains just one connected component, because the graph as a 
whole is connected.   With this by way of background, the Angluin et al. (2010) algorithm 
operates as follows. 
 
Let si denote the subgraph of G=(V,E) that is picked out (induced) by constraint Si, and let ncci 
denote the number of connected components within si. When there are no edges connecting the 
vertices of si, ncci equals the number of vertices in si; this is its maximum possible value. When si 
is connected, ncci equals 1, its minimum possible value. In general, the lower the value of ncci, 
the closer constraint Si is to being satisfied, i.e. the closer the subgraph induced by Si is to being 
connected. Let C be an objective function defined as: 

)1(∑ −=

i

i
nccC  

The algorithm begins with an empty edge set E.   This yields a strongly negative value for C 
(except in the trivial case in which each constraint contains only one vertex). The algorithm then 
adds to E the edge that yields the greatest increase2 in C. This steepest ascent step is repeated 

                                                
2
 There may be instances in which more than one edge yields the same maximal increase in C.  In such 

circumstances, the choice between these possibilities is not specified by the algorithm statement given 
here, and our implementation chooses among these possibilities arbitrarily, by the order in which edges 
are considered. 
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until all constraints are satisfied, i.e. until C = 0.   Python code implementing this algorithm may 
be found at http://linguistics.berkeley.edu/~regier/semantic-maps/ 
 
Because this is an approximation algorithm, it is not guaranteed to find the optimal solution to a 
given instance of the problem.  For our purposes, the relevant question is whether the degree of 
approximation attained by this algorithm is adequate to produce high-quality semantic maps 
from cross-language data.   We will consider a map to be high-quality if it is relatively 
parsimonious – i.e. if it accommodates the data using few edges – and we leave for future work 
the exploration of other criteria of success, e.g. correctly inferring independently known 
cognitive or diachronic connections.  With this parsimony criterion in mind, we turn now to test 
the algorithm empirically, against two well-established bodies of such data. 

 
 

4. Indefinite pronouns 
 

Haspelmath (1997) examined the semantic uses of indefinite pronouns, such as anybody, 
someone, and semantically related forms in other languages, through a large-scale cross-
language study. His primary database contained 140 semantic categories, each associated with a 
linguistic form, from a total of 40 languages.  This database is presented in full in his 1997 book. 
Each category picked out some subset of the following 9 semantic functions, illustrated below 
with examples from Haspelmath (1997): 
 

1. SPECIFIC, KNOWN TO SPEAKER: Somebody called while you were away: guess who! 
2. SPECIFIC, UNKNOWN TO SPEAKER: I heard something, but I couldn’t tell what kind of 

sound it was. 
3. NON-SPECIFIC, IRREALIS: Please try somewhere else. 
4. POLAR QUESTION: Did anybody tell you anything about it? 
5. CONDITIONAL PROTASIS: If you see anything, tell me immediately. 
6. STANDARD OF COMPARISON: In Freiburg, the weather is nicer than anywhere in Germany. 
7. DIRECT NEGATION: Nobody knows the answer. 
8. INDIRECT NEGATION: I don’t think that anybody knows the answer. 
9. FREE CHOICE: Anybody can solve this simple problem. 

 
For example, the English form someone can serve the following 5 semantic functions: SPECIFIC 
KNOWN, SPECIFIC UNKNOWN, IRREALIS, QUESTION, and CONDITIONAL. Based on the cross-language 
database, Haspelmath (1997: 64) constructed the semantic map shown in Figure 3. Each of the 
categories in his 40-language database corresponds to a connected subgraph of this graph, and 
the expectation is that the same will hold for forms from languages not yet examined. 

 

 
 

Figure 3.  A semantic map for indefinite pronouns, adapted from Haspelmath (1997: 64). The 
dashed edge from IRREALIS NON-SPECIFIC to CONDITIONAL is included by Haspelmath, but 

not by Angluin et al.’s (2010) network inference algorithm. 
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Croft and Poole (2008) re-examined Haspelmath’s (1997) 40-language database, and concluded 
that the edge from IRREALIS NON-SPECIFIC to CONDITIONAL is not necessary – that is, that the 
connectedness of each category in the database can be maintained without this edge. They took 
this finding to support their argument that “the best conceptual space is not easy to find by 
hand” (Croft & Poole, 2008: 6), and concluded that the absence of an automated method for 
inferring semantic maps from data is a potentially serious limitation.  
 
We ran Angluin et al.’s (2010) algorithm on Haspelmath’s 40-language database, which he 
kindly shared with us in electronic form, and obtained the semantic map suggested by Croft and 
Poole’s observation – that is, the same map as Haspelmath’s minus the one disputed edge. Thus 
this algorithm, and Croft and Poole, have found a simpler map than that provided by 
Haspelmath. Moreover, this simpler map is guaranteed by the algorithm to be sufficient to 
account for the 40-language sample. Whether this simpler map will also account for further data 
remains an open question. Haspelmath (1997: 64) states that his map was based both on the 40-
language sample and on some data beyond it, so it is possible that the disputed edge is 
necessitated by data outside the sample. However, whatever the outcome of that question, the 
present study demonstrates that Angluin et al.’s (2010) algorithm produces output that is 
comparable in quality (parsimony) with an influential published semantic map, and thus 
establishes the usefulness of this algorithm as a means for inferring universal structure from 
cross-language data. 

 
 

5. Spatial categories 
 

Having tested the algorithm against a dataset that covers a small number of semantic functions 
or uses, we wished to further assess it using a dataset that covers a greater number. This would 
be very time-consuming to do by hand; it is presumably for this reason that most published 
semantic maps are small. We had two specific goals. The first was to determine whether the 
structure produced by the algorithm over this more complex domain was intuitively sensible. 
The second goal was to determine whether the inferred structure would accommodate data from 
a language other than those considered in building the map – that is, whether the structure 
inferred by the algorithm would generalize beyond the training set. 
 
We conducted this test in the semantic domain of spatial relations. Spatial categories across 
languages show both universal tendencies and cross-language differences, as illustrated in 
Figure 4 and supported in greater detail by Bowerman (1996), Levinson et al. (2003), and Talmy 
(2000), among others. This mixture of universals and variation seems in principle capturable in 
terms of a semantic map – and indeed it has been captured in terms of continuous maps (e.g. 
Croft & Poole, 2008; Levinson et al., 2003). We sought to accommodate the same data using a 
large-scale automatically constructed graph-based map. 
 
We relied on an existing dataset of cross-language spatial naming data, based on 71 pictures 
portraying simple spatial relations. These stimuli were originally designed by Bowerman and 
Pederson (1992; 1993); the scenes in Figure 4 are adapted from scenes in this set.  Levinson et 
al. (2003) analyzed the spatial terms applied to these pictured spatial relations by speakers of 9 
unrelated languages: Basque, Dutch, Ewe, Lao, Lavukaleve, Tiriyó, Trumai, Yélî-Dnye, and 
Yukatek.  They describe the spatial naming data elicitation technique as follows: “Each picture 
has a designated FIGURE (or theme or trajector) colored yellow, and a GROUND object (or relatum 
or landmark), and the researcher uses the pictures to set up a verbal scenario as close as 
culturally possible to that depicted, and asks the consultant to answer a question of the form: 
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‘Where is the [Figure]?’ (given the sketched scenario).”  (Levinson et al., 2003: 487). Levinson 
and Meira kindly shared with us the spatial naming data they had available, resulting from 
elicitation sessions with speakers of the above 9 languages, against the 71 scenes described 
above.  We took these data as our dataset.   
 
 
 

 
 
 
 

Figure 4.  Universal tendencies and variation in spatial categorization. The 4 spatial relations in 
the left panel all fall in the same category in English (in), and also all fall in a single category in 
Dutch and in Yélî-Dnye. The 4 spatial relations in the right panel all fall in the same category in 
English (on; long dashed outline), but they are categorized differently in Dutch (solid outlines) 
and Yélî-Dnye (short dashed outlines). Based on the spatial dataset we treat in this paper. 

 
 
Our treatment of the data followed theirs as closely as possible.  They describe their data 
treatment as follows: “[E]ach language was treated on its own. An average of the consultants’ 
responses was calculated: for the languages with many consultants … a picture was ascribed to a 
certain adposition when more than 50% of the consultants used it; for languages with four or 
five consultants, a picture was ascribed to a certain adposition if at least two of them used it; for 
the languages with three or fewer consultants, a picture was ascribed to a certain adposition if 
any of the consultants used it.”  (Levinson et al., 2003: 503)  We followed this procedure for 
those 7 of the 9 languages for which data from individual speakers was currently available.  
However, for the remaining 2 languages, Ewe and Yukatek, data from individual speakers was 
not available, and thus we could not follow the above procedure.  For these 2 languages only, we 
instead used summary data provided by Sérgio Meira. 
 
A natural means of assessing a semantic map is to first construct the map based on data from 
one set of languages (which may be considered the training set), and to then see whether the 
resulting map also accommodates data from other languages (the test set). By the definition of 
the semantic map inference problem, the categories in the training set are guaranteed to pick 
out connected subgraphs of the resulting map; what is not known is whether the categories in 
the test set will as well. They should, to the extent that the inferred structure accurately reflects 
universal constraints on semantic variation. 
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We took the data from the 9 languages in the dataset to be our training set, and we took the 
spatial terms of English, applied to the same stimuli, to be our test set. The three authors, all 
native speakers of English, each independently named each of the scenes in English.  A scene 
was assigned to an English spatial term when at least two of the three authors used the term to 
name that scene. 
 

 
Figure 5. A semantic map of spatial meanings, obtained from Levinson et al.’s (2003) spatial 

language data. Spatial semantic categories of English are shown as outlined regions of 
this map. Dotted outline = singleton category; dashed outline = category present in the 
training data; solid outline = novel connected category; dotted-and-dashed outline = 
novel unconnected category.  A higher-resolution version of this figure is available at 

http://linguistics.berkeley.edu/~regier/semantic-maps/ 
  

We obtained a semantic map from the training set via Angluin et al.’s (2010) network inference 
algorithm. The results are shown in Figure 5. Edges tend to connect closely conceptually related 
scenes; thus it appears that the inferred structure is intuitively sensible, at least on informal 
inspection. We then asked whether the spatial naming system of English was compatible with 
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this map – that is, whether the spatial categories of English pick out connected subgraphs of the 
overall graph. Figure 5 shows that they do for all categories but one. There are four classes of 
English spatial category in this figure, distinguished by their outlines. The categories shown in 
light dotted outline (against, behind, in front of, through) contain only one scene each and are 
thus uninformative about connectivity. The categories shown in dashed outline (next to, under) 
correspond to connected subgraphs – but the same groupings were also present in the training 
set (associated with other, non-English, forms) and they are therefore necessarily connected in 
this map.  The categories shown in solid outline (around, in, on) are informative: these 
categories are not present in the training data, and are nonetheless connected – thus they 
confirm a prediction implicitly made by the structure of the semantic map concerning what 
categories one may expect to find beyond the training data.  Finally, the one category shown in 
dotted-and-dashed outline (over) is not present in the training data, and is not connected in this 
map – it thus violates the prediction that novel categories should conform to the induced 
structure.  

 
How are we to evaluate these results?   Unlike the case of indefinite pronouns discussed above, 
in the case of the spatial dataset there is no human-generated graph-based semantic map to 
which we may compare our results; they must be evaluated in their own terms.  Strictly 
speaking, the model has failed to accommodate all the English data.  At the same time, it has 
succeeded in accommodating almost all the data.  What we need, rather than a categorical 
designation of success or failure, is a quantitative measure of degree of fit.  There is no standard 
measure of degree of fit for graph-based semantic maps (Cysouw, 2007: 228), so we propose our 
own.  Specifically, we use the objective function C described in section 3 above.  That function 
reaches its maximum value of 0 when each semantic category in the data corresponds to a 
connected region of the network.  The extent to which C is less than 0 measures how far a given 
semantic map is from fitting the data perfectly. 
 
In the case of the semantic map shown in Figure 5, tested against the English data shown in that 
figure, C = -1.  This is close to the ideal of 0, but that fact leaves important questions unresolved: 
Is it in any sense surprising or informative that the map fits the English data to the degree that it 
does?  Would any system of categories of complexity comparable to English fit the semantic map 
as well as this?  Or does English fit the structure of the semantic map significantly better than 
other systems of comparable complexity would? 
 
We sought to answer these questions through a permutation test, as follows.  We began with the 
semantic map shown in Figure 5, in which each scene is labeled with an English spatial term.  
We then considered hypothetical variants that retained the same network structure, the same 
number of English categories, and the same number of scenes per category – but randomly 
reassigned which English labels were assigned to which scenes.3   Thus we consider a space of 
possible naming systems that are of complexity comparable to English, but that differ in the 
ways they partition the spatial semantic map.  We sampled 105 (100,000) such hypothetical 
systems, without replacement, and measured C for each.  We found that the value of C obtained 
from the actual English data shown in Figure 5 was higher than for any of these hypothetical 
systems (min=-46, max=-11).  We conclude that the English system fits the structure of the 
network better than do hypothetical systems of comparable complexity.  Importantly, if the 
semantic map had been very densely connected, rearrangements of the labels should not have 
                                                
3
 The procedure we used to create each such hypothetical variant is as follows. Randomly select one of 

the English spatial terms – call the number of scenes associated with this term k. Then select k random 
scenes and group them into a category. Continue by selecting another English term and creating the next 
category from the set of as-yet-uncategorized scenes. Repeat this until all scenes are categorized and all 
English terms have been selected. 
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affected the degree of fit very much because most possible categories in such a map would be 
connected.  Thus the present outcome suggests that the inferred semantic map of Figure 5 
provides a description of the data that is sparse (parsimonious) enough, and thus constrained 
enough, that it accommodates attested data better than it does arbitrary hypothetical data.   
 
The semantic map of Figure 5 is based on a small set of languages, against a larger set of stimuli 
than is common. The map’s approximation to universal structure is presumably correspondingly 
loose – as is suggested by its imperfect fit to a novel language, English.  A more complete test of 
these ideas will require a larger set of cross-linguistic data.  Nonetheless, these results do show 
that the network inference algorithm can produce interpretable and intuitively reasonable 
semantic maps with a large number of vertices, that at least some of the predictions the resulting 
map makes about categories from new languages are supported, and that the resulting map is 
relatively parsimonious. These findings support the proposal (e.g. Croft & Poole, 2008; 
Levinson et al., 2003) that a universal representation may underlie the substantial cross-
language variation in spatial semantic systems. 
 
These results also raise a more general theoretical question, concerning the adequacy of 
connectedness as a constraint on semantic categories.  The map in Figure 5 supports the 
categories in the training set, and most of those in the test set, as connected regions – but it also 
supports many other connected regions that seem implausible as semantic categories.  For 
example, one may trace an elongated connected region that starts at one corner of the figure and 
extends in a chain to the opposite corner, picking out a series of connected scenes that each 
seem conceptually related to their immediate neighbors in the chain, but that do not hang 
together as a whole, and that exclude other conceptually related scenes.   Categories do often 
pick out short chains of related meanings.  For example, Bowerman and Pederson (1993) have 
identified an apparently universal sequencing or chain of spatial meanings (a subset of those 
meanings explored here), ranging from IN to ON, such that spatial terms from different 
languages pick out different subchains of the overall chain; this is effectively a semantic map in 
the form of a chain, with spatial terms picking out subchains.  But these were relatively short 
chains of meaning, and it seems counterintuitive that a category would have the extremely high 
degree of elongation shown by the chain imagined above, in the context of Figure 5, without any 
coherent and reasonably compact core or central region.  Thus, these results underscore the 
previously-noted fact that connectedness appears to be too loose a constraint on category shape 
(Croft, 2003: 138; Cysouw, 2001: 609), and that categories may tend to be more compact and 
coherent than is suggested by this constraint alone.  This question mirrors a debate in the 
literature on color naming, over whether color terms pick out merely connected regions of 
perceptual color space, that might exhibit high degrees of chaining or elongation (Roberson, 
Davies, & Davidoff, 2000; Roberson, 2005) or regions that are both connected and compact 
(Jameson & D’Andrade, 1997).  Although the question is implicit in the use of connectedness as 
a constraint in semantic maps generally, it becomes especially prominent given large maps such 
as that in Figure 5 – and the creation of such maps is facilitated by the availability of an 
algorithm for inferring such maps from data. 
 

 
6. General discussion 

 
We have seen that the problem of inferring presumptively universal structure from cross-
language semantic data is formally identical to the problem of inferring a social network from 
disease outbreaks in a population. From this identity it follows that semantic map inference is 
computationally intractable, confirming an earlier conjecture to this effect. However it also 
follows that an existing approximation algorithm for social network inference may be applied to 
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linguistic data, and we have seen that this algorithm yields sensible results when applied to two 
cross-language datasets of semantic categories. 
 
Several questions are left open by these findings. It is unclear how well this algorithm, or any 
approximation algorithm that may be proposed to replace it, will perform on other datasets. It is 
also unclear which semantic domains, and which questions within these domains, are best 
approached using graph-based semantic maps, rather than another means of inferring the 
universal bases of semantic variation – for example, continuous representations such as those 
produced by multi-dimensional scaling and similar procedures (e.g. Cysouw, 2001; Croft & 
Poole, 2008; Levinson et al., 2003; Majid et al., 2008).  Finally, the present results highlight the 
possibility that connectedness may be too loose a constraint on category shape, but they do not 
determine how best to address this shortcoming: whether it is preferable to supplement 
connectedness by further constraints (e.g. Croft, 2003: 138), to use weighted edges that reflect 
the frequency with which pairs of semantic functions co-occur (Cysouw, 2007: 233), or to 
pursue a different account altogether, such as the view that semantic systems across languages 
reflect the need for informative communication (e.g. Jameson & D’Andrade, 1997; Kemp & 
Regier, 2012; Regier, Kay, & Khetarpal, 2007).  Settling these open questions will require further 
investigation.   
 
Nonetheless, two broad conclusions can be drawn. First, high-quality (that is, relatively 
parsimonious) semantic maps can be efficiently inferred from cross-language data, and the 
question of computational tractability should therefore not be viewed as an obstacle to using 
them. Second, and more generally, these results suggest that the formalization of problems in 
semantic typology can lead to insight from structurally similar problems in unrelated domains. 
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