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Abstract 

Why do languages parcel human experience into categories in 
the ways they do? Languages vary widely in their category 
systems but not arbitrarily, and one possibility is that this 
constrained variation reflects universal communicative needs. 
Consistent with this idea, it has been shown that attested 
category systems tend to support highly informative 
communication. However it is not yet known what process 
produces these informative systems. Here we show that 
human simulation of cultural transmission in the lab produces 
systems of semantic categories that converge toward greater 
informativeness, in the domains of color and spatial relations. 
These findings suggest that larger-scale cultural transmission 
over historical time could have produced the diverse yet 
informative category systems found in the world’s languages. 

Keywords: Informative communication, language evolution, 
iterated learning, cultural transmission, spatial cognition, 
color naming, semantic universals. 

The origins of semantic diversity 
Languages vary widely in their fundamental units of 

meaning—the concepts and categories they encode in single 
words or other basic forms. For example, some languages 
have a single color term spanning green and blue (Berlin & 
Kay, 1969), and some have a spatial term that captures the 
notion of being in water (Levinson & Meira, 2003: 496), 
neither of which is captured by a single word in English. 
Yet at the same time, similar or identical meanings often 
appear in unrelated languages. What explains this pattern of 
wide yet constrained variation?  

An existing proposal suggests an explanation in terms of 
the functional need for efficient communication: that is, 
communication that is highly informative yet requires only 
minimal cognitive resources. There may be many ways for 
systems to be communicatively efficient, and the different 
category systems that we see across languages may 
represent different language-specific solutions to this shared 
communicative challenge. This idea has accounted for 
cross-language semantic variation in the domains of color 
(Regier et al., 2007; 2015), kinship (Kemp & Regier, 2012), 
spatial relations (Khetarpal et al., 2013), and number (Xu & 
Regier, 2014). 

However, this prior work has also left an important 
question unaddressed. In a commentary on Kemp and 

Regier’s (2012) kinship study, Levinson (2012) pointed out 
that although that research explains cross-language semantic 
variation in communicative terms, it does not tell us “where 
our categories come from” (p. 989); that is, it does not 
establish what process gives rise to the diverse attested 
systems of informative categories. Levinson suggested that 
a possible answer to that question may lie in a line of 
experimental work that explores human simulation of 
cultural transmission in the laboratory, and “shows how 
categories get honed through iterated learning across 
simulated generations” (p. 989). We agree that prior work 
explaining cross-language semantic variation in terms of 
informative communication has not yet addressed this 
central question, and we address it here. 

Iterated learning and category systems 
The general idea behind iterated learning studies is that of 

a chain or sequence of learners. The first person in the chain 
produces some behavior; the next person in the chain 
observes that behavior, learns from it, and then produces 
behavior of her own; that learned behavior is then observed 
by the next person in the chain, who learns from it, and so 
on. This experimental paradigm is meant to capture in 
miniature the transmission and alteration of cultural 
information across generations; the learned behavior 
generally changes as it is filtered through the chain of 
learners.  

Iterated learning and related learning studies have 
produced a number of findings that are directly relevant to 
the development of informative category systems. Kirby et 
al. (2008) showed that iterated learning of artificial 
languages resulted in those languages gradually becoming 
more structured, suggesting that linguistic structure could 
emerge from the dynamics of cultural transmission. 
Fedzechkina et al. (2012), in a non-iterated but relevant 
learning study, showed that learners of an artificial language 
restructured their input in a way that increases the efficiency 
of the learned system—specifically, learners preferentially 
deployed case marking in contexts in which it was highly 
informative, although that bias was not present in the input. 
This finding establishes the general principle that learners 
may alter their input in the direction of greater efficiency. 
However, the study did not examine the learning of systems 



 

of semantic categories, and it is unknown whether the 
principle they established generalizes to the shaping of such 
systems. Finally, Xu et al. (2013) conducted an iterated 
learning study that did examine the learning of semantic 
category systems—but did not examine informativeness 
(see also Silvey et al., 2015). Xu et al. (2013) showed that 
iterated learning of color names produces systems of named 
color categories that are similar to those found in the 
world’s languages. It is known that naturally-occurring 
color naming systems tend to support informative 
communication (e.g. Regier et al., 2015), so Xu et al.’s 
(2013) results indirectly suggest that iterated learning may 
lead to greater informativeness in category systems. 
However they did not directly test whether that is the case, 
and did not examine any semantic domain other than color.  

Taken as a whole, the literature reviewed above leaves 
open two major relevant questions. (1) Does iterated 
learning of category systems in fact produce systems of 
greater informativeness? (2) If so, is this tendency toward 
informativeness found across different semantic domains? 
We pursue these questions here, to see whether they provide 
an answer to the challenge posed by Levinson (2012).  

In what follows, we first present a computational 
framework for exploring semantic systems through the lens 
of informative communication. We then present two studies. 
In the first, we reanalyze the color naming data of Xu et al. 
(2013), and ask whether those data reveal convergence 
toward informative color naming systems. In the second 
study, we conduct an analogous iterated learning experiment 
in the domain of spatial relations, and ask the same question 
of those data. To preview our results, we find that in both 
domains, systems of semantic categories become 
increasingly informative through the process of iterated 
learning. We conclude that the informative yet varied 
systems of categories in the world’s languages may have 
resulted from larger-scale processes of cultural transmission. 

Informative communication 
We take a semantic system to be informative to the extent 

that it supports accurate mental reconstruction by a listener 
of a speaker’s intended message (Kemp & Regier, 2012; 
Regier et al., 2015). Figure 1 illustrates this idea in the 
context of communicating about color in English.  

In the figure, time and causality flow from left to right. 
The speaker has in mind a particular target color t drawn 
from the universe U of all colors, shown here for simplicity 
as a 1-dimensional spectrum. The speaker represents this 
target color as a probability distribution s over U, centered 
at t. In our treatment below, we will assume that the speaker 
is certain of the target object, so that s(t)=1 and s(i)=0 ∀i≠t, 
but the framework can be generalized to accommodate 
speaker uncertainty about the target. The speaker wishes to 
communicate the target color to the listener, and so uses a 
word w: here, the English word blue. Having heard this 
word, the listener then attempts to mentally reconstruct the 
speaker’s representation s, given w. The listener’s 
reconstruction is also a probability distribution, l, and is 

intended to approximate the speaker’s distribution s but is 
necessarily less precise, because the word w is semantically 
broad. 

 
 

Figure 1: A scenario illustrating informative 
communication. From Regier et al. (2015). 

 
The listener distribution is determined in different ways 

for different semantic domains, depending on the character 
of the domain. In the color and space analyses below, as in 
our earlier work in these domains (Regier et al., 2007; 2015; 
Khetarpal et al., 2013), we assume a similarity-based 
listener distribution: the listener reconstructs the speaker’s 
intended meaning by assigning mass to each object i in the 
domain (here, each color i) as a function of how similar i is 
to the objects in the category named by w:  
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This captures the intuition that category-central referents 
(those with high similarities to other members) are the most 
expected targets when that category is used. The similarity 
sim(i,j) between objects i and j is determined separately for 
different domains, as described in our studies below. 

Given the speaker s and listener l distributions, we define 
the communicative cost c(t) of communicating object t 
under a given semantic system to be the information lost in 
communication: that is, the information lost when l is taken 
as an approximation to s. We formalize this as the Kullback-
Leibler divergence between s and l. In the case of speaker 
certainty as assumed here, this quantity reduces to surprisal: 
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Finally, we define the communicative cost for the domain 
as a whole to be the expected communicative cost over all 
objects in the domain universe U: 
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Here n(i) is the probability that the speaker will wish to 
talk about object i. In the analyses below, as in our earlier 
work in color and space (Regier et al., 2007; 2015; 
Khetarpal et al., 2013), we assume for simplicity that n(i) is 
uniform. We take a semantic system to be informative to the 
extent that it exhibits low E[c]. A system could increase its 
informativeness through the addition of more categories; in 
our analyses we control for this possibility by comparing 
(groups of) systems with the same number of categories. 



 

Study 1: Color 
Xu et al. (2013) showed that iterated learning of color 

naming yields categorical partitions of color space that are 
similar to color naming systems found in the world’s 
languages. They measured the distance between color 
categories produced in their experiment and those in the 
World Color Survey (WCS: Cook et al., 2005), the largest 
existing publicly available database of color naming data, 
containing color naming data from speakers of 110 
languages of non-industrialized societies. Xu et al. (2013) 
found that as color naming systems in their iterated learning 
task were transmitted across generations of learners, the 
systems became more similar to those in WCS languages. In 
a separate study, Regier et al. (2015) assessed the 
communicative cost of color naming systems in the 
languages of the WCS, using the formal framework 
described above, and showed that the majority of these 
systems are highly informative, despite their diversity.  

Taken together, these earlier findings suggest that color 
naming systems produced under iterated learning may come 
to resemble those found in languages through gradual 
increases in informativeness over generations. However, 
that proposal of increasing informativeness under iterated 
learning has not been directly tested. We test it here, by 
reanalyzing the color naming data from Xu et al. (2013)’s 
iterated learning experiment in terms of the framework 
described above.  
 
Methods 

Iterated learning of color. Xu et al. (2013) trained an 
initial generation of 20 participants on random partitions of 
color space into 3-6 categories, and then asked them to 
recall those categories by labeling a set of color chips 
accordingly. The next set of 20 participants each studied the 
assignment of labels to color chips of a single first 
generation learner, and created their own labelings in turn, 
which were then used to train the subsequent generation. 
This procedure was iterated over 20 chains of learners with 
13 generations of learners each. In each generation of each 
chain, participants created a full color naming system by 
assigning a category label to each of the 330 color chips in 
the color naming array used in the WCS. Xu et al. then 
measured the dissimilarity between these transmitted 
category systems, at each generation, and the color naming 
systems of the WCS. They measured dissimilarity using 
variation of information (VI: Meilă, 2007), a distance 
measure between different groupings of the same set of 
items.  

The data in Figure 2 (red line, left y-axis) are from Xu et 
al. (2013). These data show that as color naming systems 
are filtered through generations of learners, they become 
more similar to the natural systems of the WCS, as Xu et al. 
reported. We wish to ascertain whether this change also 
reflects a gradual increase in informativeness, brought about 
through transmission. 

 

 

Communicative cost. In order to assess the informativeness 
of a given color naming system, we need to specify how 
similarity is determined in that domain (recall Equation 1). 
As in earlier work in this domain (Regier et al., 2007; 2015), 
we take the similarity of two colors i and j to be a Gaussian 
function of the perceptual distance between them: 
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Following Regier et al. (2007; 2015), the scaling factor c is 
set to .001 for all analyses reported here, and dist(i,j) is the 
distance between colors i and j in the CIELAB color space. 
Given this, we can now assess the informativeness of a 
given color naming system following Equations 1-4. 
 
Results 

Figure 2 (blue line, right y-axis) shows the average 
communicative cost E[c] of the 20 color naming systems in 
Xu et al’s (2013) study, over the 13 generations of that 
study. Generation 0 corresponds to the random initial 
partitions supplied to the first generation of participants in 
training.  
 

 
 

Figure 2: Average distance to WCS languages (red; left y-
axis), and communicative cost (blue; right y-axis) of 

artificial systems of color categories, over generations of 
iterated learning. Bars indicate standard error of the mean. 

 
It can be seen that these color naming systems exhibit 
decreasing communicative cost (increasing informativeness) 
over the first four generations of learners, after which no 
further systematic change is seen. This pattern of change 
over time closely parallels that seen in the similarity of lab-
generated color naming systems to those of actual languages 
(red line). This finding suggests that artificial color naming 
systems come to resemble those found in languages through 
a transmission process that favors systems of greater 
informativeness.  

Study 2: Spatial relations 
Does iterated learning lead to increasing informativeness 

across multiple domains, or only in the domain of color? To 



 

answer this question, we conducted an analogous study in a 
different semantic domain, that of spatial relations.  

Languages categorize the spatial domain in a wide variety 
of ways that nonetheless show certain recurring tendencies 
(e.g. Levinson & Meira, 2003). Figure 3 gives a quick sense 
for this variation.  

 

 
 

Figure 3: Ten spatial relations, as categorized in two 
languages: Tiriyó and Yélî-Dnye.  

Adapted from Levinson & Meira (2003).  
 

Additionally, spatial systems across languages tend to 
support informative communication (Khetarpal et al., 2013). 
In both of these respects, space is like color. However it is 
unlike color in that it is more complex. Perceptual color 
space is defined with respect to just three dimensions: hue, 
saturation, and lightness. In contrast, the mental 
representations underlying the kinds of spatial relations 
shown in Figure 3 appear to rely on a much wider range of 
spatial features (Levinson & Meira, 2003; Xu & Kemp, 
2010). 

We considered spatial naming data, collected both in the 
field and in the lab, relative to a standard stimulus set: the 
Topological Relations Picture Series (TRPS: Bowerman & 
Pederson, 1992). The spatial scenes in Figure 3 above are 
from the TRPS. The full TRPS is a set of 71 such line 
drawings depicting different spatial relations. Each image 
shows an orange figure object located relative to a black 
background object. We wished to discover whether iterated 
learning of category systems over these stimuli would 
converge toward the spatial systems of natural languages, 
and toward greater informativeness, in a parallel to the color 
findings reported above.  
 
Methods 

Iterated learning of spatial relations. 50 undergraduates at 
UC Berkeley took part in the study in return for class credit, 
forming 5 transmission chains of 10 generations each. Each 
participant completed an iterated learning task in which they 
studied and then attempted to recall category assignments 
for 4-category partitions of the 71 TRPS scenes.  

Participants were instructed to learn spatial categories 
from an “alien language” by observing a series of scenes 
paired with visual sentences. In each training trial, a scene 
from the TRPS was presented for 5 seconds along with a 
visual sentence describing that scene in a hypothetical alien 
language. The visual sentence consisted of three smaller 
images beneath the main scene, as shown in Figure 4. The 
visual sentences showed the figure and ground objects from 
the main scene separately, and a colored patch indicating the 
alien spatial category to which the spatial relationship 
between figure and ground belongs. For example, in Figure 
4, the participant is labeling the spatial relation apple-in-
bowl as belonging to the category marked by red. Other 
scenes would be labeled by other colors, for a total of four 
color-coded categories. 
 

 
 

Figure 4: Example test and training trials from two 
consecutive generations of a transmission chain. 

 
Participants completed two training sessions in which 

each of the 71 TRPS scenes was presented one at a time in 
random order paired with a color representing the spatial 
category to which that scene belongs. After two rounds of 
training, participants were shown the scenes and visual 
sentences a final time, but without the color label, and 
categorized each spatial relationship according to the alien 
language by pressing colored keys to indicate category 
assignments. Color labels and their locations on the 
keyboard were counterbalanced across participants within 
each iterated learning chain.  

As in Xu et al.’s (2013) study, each of the 5 chains was 
initialized as a random partition of the 71 TRPS scenes into 
four roughly equally-sized categories, which the first 
participants in each chain studied during training and 
attempted to reproduce in the following test session. All 
subsequent participants in each chain were trained on the 
responses of the previous participant and were instructed to 
reproduce them as closely as possible, but were not aware 
that any of the data had any connection to other participants.  

We excluded any participants whose categorization 
accuracy was at or below chance or who reported that they 
relied principally on non-spatial information (e.g. the 
objects involved) to learn the spatial categories.  

Distance to languages. Analogous to Xu et al. (2013), we 
measured the dissimilarity between these transmitted spatial 
category systems at each generation, and the spatial systems 
of languages. Our target languages were a convenience 
sample: Arabic, Basque, Chichewa, Dutch, English, 
Japanese, Maijɨki, Mandarin Chinese, and Spanish. All the 



 

spatial naming data we drew on from these languages are 
unpublished. The data were collected either by our group 
(Arabic, Chichewa, Japanese, Mandarin Chinese, Spanish), 
or by collaborators who kindly shared their data with us and 
whom we gratefully acknowledge below (remaining 
languages). All data were collected relative to the TRPS 
scenes. For each language, we assigned to each TRPS scene 
the spatial term that was applied to that scene by the 
plurality of native speakers interviewed. This procedure 
yielded labels for all TRPS scenes, in each language. 
Following Xu et al. (2013), we used variation of 
information (VI) to measure the distance between category 
systems obtained through iterated learning, and those found 
in these languages. 

Communicative cost. In order to assess informativeness for 
spatial relations, as for color, we needed an independent 
measure of similarity. We took the similarity between any 
two spatial relations stimuli to be determined by pile-sorting 
of those stimuli in a separate study. Khetarpal et al. (2010) 
asked native English speakers to sort the TRPS scenes into 
piles based on the similarity of the spatial relationships they 
depict. We took the similarity of any two scenes to be the 
proportion of participants who sorted those two scenes into 
the same pile in Khetarpal et al.’s (2010) data. Given this 
specification of similarity, we assessed the informativeness 
of spatial naming systems following Equations 1-3.  

 
Results 

Figure 5 (red line, left y-axis) shows the average distance 
(VI) between the spatial naming systems generated through 
iterated learning, and those of our language sample. This 
distance gradually decreases, as the systems are shaped by 
transmission from generation to generation. Thus, as in the 
case of color, iterated learning leads to spatial naming 
systems that become increasingly similar to those of natural 
languages. 

 

 
 

Figure 5: Average distance to languages (red; left y-axis), 
and communicative cost (blue; right y-axis) of artificial 

systems of spatial categories, over generations of iterated 
learning. Bars indicate standard error of the mean. 

 

For comparison, Figure 5 (blue line, right y-axis) shows the 
average communicative cost of category systems across 
generations in our experiment. As in the case of color, this 
quantity also decreases as systems are transmitted from 
generation to generation, showing that transmitted spatial 
systems become more informative as they are transmitted. 
Moreover, again as in the case of color, this decrease closely 
tracks the decrease in distance to language, suggesting that 
iterated learning produces spatial systems that resemble 
those of languages through a transmission process that 
favors informative categories. 
 A natural concern is that the participants in our 
experiment may have been influenced by their knowledge of 
English, and that the increasing proximity of the learned 
systems to those of actual languages may have been driven 
by English semantic structuring. We feel this concern 
should be lessened by three observations (not shown in the 
figure): (1) the learned category systems get progressively 
closer to all languages considered, including those with 
categories that cross-cut English spatial terms; (2) the 
learned category systems are closer to some other languages 
(e.g. Arabic, Chichewa, and Mandarin Chinese) than they 
are to English; and (3) the same qualitative results obtain 
when English is excluded from the set of languages to 
which the learned category systems are compared. Given 
this, it seems plausible that the increasing proximity to 
languages may have been driven in large part by universal 
semantic tendencies and cognitive forces, rather than by the 
English language itself. 

Increases in both informativeness and language-like 
semantic structuring are illustrated below in Figure 6. The 
figure shows scenes from a single category at the beginning 
(left panel) and end (right panel) of our experiment. After 
transmission through 10 generations of learners, the 
meaning of the category has been altered through the loss of 
many initial members depicting a wide variety of spatial 
relations, down to a set of scenes exemplifying a novel 
relational category that expresses the notion “tightly 
around”, or encirclement and tight fit. This spatial notion is 
intuitively clear, yet does not correspond to a single spatial 
term in English, the primary language of our participants. 

 

 
 

Figure 6: Representative scenes showing the semantic 
reorganization of a single category over transmission. 



 

Discussion and conclusions  
We have shown that iterated learning produces semantic 

systems that tend toward informative category structure, and 
also toward similarity with human languages. We find this 
pattern in two domains—color and spatial relations—
suggesting that it may hold more generally across domains. 
To the extent that these findings do generalize, they suggest 
an answer to Levinson’s (2012) question of how diverse 
category systems across languages assume their highly 
informative character. 

A number of questions are left open by our findings. 
Would similar findings have been obtained if we had made 
other, but still reasonable, assumptions in our formalization 
of informative communication? Do these results extend to 
other semantic domains? Perhaps most importantly, do the 
results scale up to transmission in a larger social context? 
These questions are left open for future research. Despite 
these caveats, however, our initial findings reported here do 
suggest support for a specific account of the origins of the 
semantic diversity seen in the world’s languages, as a 
natural result of shared communicative principles, operating 
across communities of language learners, and across time. 
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