L anguage evolution in the lab tends toward infor mative communication

Alexandra Car stensen’ (abc@ber keley.edu)
Jing Xu* (jing.xu@jhmi.edu)
Cameron T. Smith? (vmpfcl@berkeey.edu)
Terry Regier?® (terry.regier @berkeley.edu)

Department of PsycholodyDepartment of LinguisticsCognitive Science Progrdm
University of California, Berkeley, CA 94720 USA

Department of Neurology, Johns Hopkins Univerdigltimore, MD 21287 USA

Abstract

Why do languages parcel human experience into catesgin
the ways they do? Languages vary widely in thetegary
systems but not arbitrarily, and one possibilitythat this
constrained variation reflects universal commurveaheeds.
Consistent with this idea, it has been shown thtsted
category systems tend to support highly informative
communication. However it is not yet known what qaes
produces these informative systems. Here we show that
human simulation of cultural transmission in thie pgoduces
systems of semantic categories that converge togaadter
informativeness, in the domains of color and spatiations.
These findings suggest that larger-scale cultugaisimission
over historical time could have produced the dieeyet
informative category systems found in the worldisduages.

Keywords: Informative communication, language evolution,
iterated learning, cultural transmission, spatialgration,
color naming, semantic universals.

Theorigins of semantic diversity

Regier’'s (2012) kinship study, Levinson (2012) pethout
that although that research explains cross-langsageantic
variation in communicative terms, it does not tedl“where
our categories come from” (p. 989); that is, it sla®ot
establish whatprocess gives rise to the diverse attested
systems of informative categories. Levinson suggkshat

a possible answer to that question may lie in & lof
experimental work that explores human simulation of
cultural transmission in the laboratory, and “sholmwv
categories get honed through iterated learning sacro
simulated generations” (p. 989). We agree thatrpsiork
explaining cross-language semantic variation irmgerof
informative communication has not yet addressed thi
central question, and we address it here.

Iterated learning and category systems

The general idea behind iterated learning studigisat of
a chain or sequence of learners. The first pensdhea chain
produces some behavior; the next person in thenchai

Languages vary widely in their fundamental units ofobserves that behavior, learns from it, and thesdypeces

meaning—the concepts and categories they encoslagie
words or other basic forms. For example, some laggs
have a single color term spanning green and blegli(B&
Kay, 1969), and some have a spatial term that ceptihe
notion of being in water (Levinson & Meira, 200326},
neither of which is captured by a single word ingksh.
Yet at the same time, similar or identical meaniofen
appear in unrelated languages. What explains #tienm of
wide yet constrained variation?

An existing proposal suggests an explanation imseof
the functional need foefficient communication: that is,
communication that is highly informative yet reagronly
minimal cognitive resources. There may be many ways
systems to be communicatively efficient, and thiéecdént

behavior of her own; that learned behavior is thbserved

by the next person in the chain, who learns frgnariid so
on. This experimental paradigm is meant to capture
miniature the transmission and alteration of caltur
information across generations; the learned behavio
generally changes as it is filtered through theirchaf
learners.

Iterated learning and related learning studies have
produced a number of findings that are directhgvaht to
the development of informative category systemsbKiet
al. (2008) showed that iterated learning of aitdic
languages resulted in those languages graduallgniieg
more structured, suggesting that linguistic strrectaould
emerge from the dynamics of cultural transmission.

represent different language-specific solutionthts shared

learning study, showed that learners of an aréifiginguage

communicative challenge. This idea has accounted fcrestructured their input in a way that increasesetficiency

cross-language semantic variation in the domainsobdr
(Regier et al., 2007; 2015), kinship (Kemp & Reg012),
spatial relations (Khetarpal et al., 2013), and ben{Xu &
Regier, 2014).

of the learned system—specifically, learners pexftally
deployed case marking in contexts in which it waghly
informative, although that bias was not preserthainput.
This finding establishes the general principle tlearners

However, this prior work has also left an importantMay alter their input in the direction of greatéfiogency.
question unaddressed. In a commentary on Kemp arfiowever, the study did not examine the learningystems



of semantic categories, and it is unknown whethler t intended to approximate the speaker’s distribusdut is
principle they established generalizes to the stippf such  necessarily less precise, because the woisl semantically
systems. Finally, Xu et al. (2013) conducted amatel  broad.
learning study thatlid examine the learning of semantic
category systems—but did not examine informativenes t w
(see also Silvey et al., 2015). Xu et al. (2013)vedd that | i .
iterated learning of color names produces systédmsumed
color categories that are similar to those foundthe U
world’'s languages. It is known that naturally-ocouy .9 9
color naming systems tend to support informative °
communication (e.g. Regier et al., 2015), so Xuaks
(2013) results indirectly suggest that iteratedrzsy may
lead to greater informativeness in category systems
However they did not directly test whether thathis case, Figure 1: A scenario illustrating informative
and did not examine any semantic domain other ¢oéor. communication. From Regier et al. (2015).
Taken as a whole, the literature reviewed aboveetea
open two major relevant questions. (1) Does iterate The listener distribution is determined in differamays
learning of category systems in fact produce systafn for different semantic domains, depending on tharatter
greater informativeness? (2) If so, is this tengetmwvard  of the domain. In the color and space analysesiheds in
informativeness found across different semantic @lag?  our earlier work in these domains (Regier et &07 2015;
We pursue these questions here, to see whetheptheigle  Khetarpal et al., 2013), we assume a similarityedas
an answer to the challenge posed by Levinson (2012) listener distribution: the listener reconstructe gpeaker’s
In what follows, we first present a computationalintended meaning by assigning mass to each objacthe
framework for exploring semantic systems throughldns domain (here, each coldras a function of how simildris
of informative communication. We then present tiwalies.  to the objects in the category namedaby
In the first, we reanalyze the color naming datxofet al. 1) o< ZSim(i i
(2013), and ask whether those data reveal conveegen T ') 1)
toward informative color naming systems. In theoset ) o
study, we conduct an analogous iterated learnipgrment This captures the intuition that category-centedérents
in the domain of spatial relations, and ask theesgmestion ~ (those with high similarities to other members) e most
of those data. To preview our results, we find thaboth ~ €xpected targets when that category is used. Thitasty
domains, systems of semantic categories becomdM(ij) between objectsand] is determined separately for
increasingly informative through the process ofrated different domains, as described in our studieswelo
learning. We conclude that the informative yet edri  Given the speakesand listenet distributions, we define
systems of categories in the world’s languages tmye the communicative cose(t) of communicating object
resulted from larger-scale processes of cultusaisimission. under a given semantic system to be the informaaehin
communication: that is, the information lost wHer taken
| nfor mative communication as an approximation ® We formalize this as the Kullback-
. . ) Leibler divergence betweemandl. In the case of speaker
We take a semantic system toihformative to the extent certainty as assumed here, this quantity reducesrfwisal:
that it supports accurate mental reconstructiora gtener .
of a speaker’s intended message (Kemp & Regier2;201 c(t) = DKL(SH')=25(i)|092i.|)=|092i )
Regier et al., 2015). Figure 1 illustrates thisaide the o 1(i) I(t)
context Of. communicating about golor in English. . Finally, we define the communicative cost for thoin
In the figure, time and causality flow from left taght.
The speaker has in mind a particular target cobldrawn
from the universéJ of all colors, shown here for simplicity

as a whole to be the expected communicative ccest alv
objects in the domain univertk

as a l-dimensional spectrum. The speaker represiaists E[c]=2n(i)c(i) 3)
target color as a probability distributi@nover U, centered ieu
att. In our treatment below, we will assume that theaker Heren(i) is the probability that the speaker will wish to

is certain of the target object, so tise)=1 ands(i)=0 Vi#t,  talk about object. In the analyses below, as in our earlier
but the framework can be generalized to accommodat@ork in color and space (Regier et al., 2007; 2015;
speaker uncertainty about the target. The spealglies/to  Khetarpal et al., 2013), we assume for simpliditgtn(i) is
communicate the target color to the listener, amdises a uniform. We take a semantic system to be infornestivthe
word w: here, the English wordlue. Having heard this extent that it exhibits lovE[c]. A system could increase its
word, the listener then attempts to mentally retows the  informativeness through the addition of more catiego in
speaker's representatiors, given w. The listener's our analyses we control for this possibility by qaring
reconstruction is also a probability distributidn,and is  (groups of) systems with the same number of categjor



Study 1: Color

Xu et al. (2013) showed that iterated learning ofor ~ Communicative cost. In order to assess the informativeness
naming vields categorical partitions of color spéuat are  ©f @ given color naming system, we need to speledw
similar to color naming systems found in the wasld’ similarity is determined in that domain (recall Btjon 1).
languages. They measured the distance between col®g in earlier work in this domain (Regier et aD0Z; 2015),
categories produced in their experiment and thos¢he We take the similarity of two coloisandj to be a Gaussian
World Color Survey (WCS: Cook et al., 2005), thegést function of the perceptual distance between them:
existing publicly available database of color nagnioata,
containing color naming data from speakers of 110
languages of non-industrialized societies. Xu et(2013) Following Regier et al. (2007; 2015), the scaliagtbrc is
found that as color naming systems in their itetaéarning  set to .001 for all analyses reported here, disidi j) is the
task were transmitted across generations of legyrrtee  distance between colorsindj in the CIELAB color space.
systems became more similar to those in WCS laregudg ~ Given this, we can now assess the informativendsa o
a separate study, Regier et al. (2015) assessed tpwen color naming system following Equations 1-4.
communicative cost of color naming systems in the
languages of the WCS, using the formal frameworkResults
described abqve, gnd sho_wed that. the majprity ebdh Figure 2 (blue
systems are highly informative, despite their dsitgr

sim(, j) = expcxdist(i, j)?) (4)

line, right y-axis) shows the averag

“1 USSR communicative codE[c] of the 20 color naming systems in
Taken together, these earlier findings suggest ¢bldr v\, ot a5 (2013) study, over the 13 generationstht

naming systems produced under iterated learning@oaye 4,4y, Generation 0 corresponds to the randomainiti

to resemble those found in languages through gtaduy,itions supplied to the first generation of fEpants in
increases in informativeness over generations. Mewe {rining

that proposal of increasing informativeness underated
learning has not been directly tested. We testerehby 33
reanalyzing the color naming data from Xu et aD1@'s

8.7

iterated learning experiment in terms of the framdw - 85
described above. & 29 83 &
E’ 27 é
M ethods 2, 18
Iterated learning of color. Xu et al. (2013) trained an £ 13 79
initial generation of 20 participants on randomtiians of ° s 77 °
color space into 3-6 categories, and then asketh ttee s 15

recall those categories by labeling a set of calbips
accordingly. The next set of 20 participants edalisd the T T e s e s s s
assignment of labels to color chips of a singlestfir Generation

generation learner, and created their own labelingsirn,

which were then used to train the subsequent géoera
This procedure was iterated over 20 chains of Earmwith
13 generations of learners each. In each generafieach
chain, participants created a full color namingtesys by

Figure 2: Average distance to WCS languages (edtly
axis), and communicative cost (blue; right y-axik)
artificial systems of color categories, over getiers of
iterated learning. Bars indicate standard errahefmean.

assigning a category label to each of the 330 atigrs in

the color naming array used in the WCS. Xu et laént It can be seen that these color naming systemsbiexhi
measured the dissimilarity between these transmhittedecreasing communicative cost (increasing inforveaiess)
category systems, at each generation, and the nalbing  over the first four generations of learners, aftdiich no
systems of the WCS. They measured dissimilarityngisi further systematic change is seen. This patterchafhge
variation of information (VI: Mei#, 2007), a distance over time closely parallels that seen in the siritileof lab-
measure between different groupings of the sameoBet generated color naming systems to those of acingliages
items. (red line). This finding suggests that artificialler naming
systems come to resemble those found in languagesgh

a transmission process that favors systems of areat
informativeness.

The data in Figure 2 (red line, left y-axis) arenfr Xu et
al. (2013). These data show that as color namistesys
are filtered through generations of learners, thegome
more similar to the natural systems of the WCSXat al.
reported. We wish to ascertain whether this chaalge
reflects a gradual increase in informativenessydnb about
through transmission.

Study 2: Spatial relations

Does iterated learning lead to increasing informeatess
across multiple domains, or only in the domainabc? To



answer this question, we conducted an analogody &tua Participants were instructed to learn spatial aaieg
different semantic domain, that of spatial relagion from an “alien language” by observing a series céngs
Languages categorize the spatial domain in a wadiety  paired with visual sentences. In each trainingd,taascene
of ways that nonetheless show certain recurringdnacies from the TRPS was presented for 5 seconds alony avit
(e.g. Levinson & Meira, 2003). Figure 3 gives acjusense visual sentence describing that scene in a hypotietlien

for this variation. language. The visual sentence consisted of threslesm
images beneath the main scene, as shown in Figurbet
Yéli ‘nede visual sentences showed the figure and ground tsbjeam
_attached by spiking” __ ___ __ the main scene separately, and a colored patctuaitiol the
I Af: St 1 iy alien spatial category to which the spatial reladiup
 iriys 7o e ! ! @ﬂﬂached‘: between figure and ground belongs. For exampl&jgare
bin . TTTITOTTE ‘ I | 4, the participant is labeling the spatial relatiapple-in-
TR | = 3 bowl as belonging to the category marked by red. Other
'\ // Vi ) i ] scenes would be labeled by other colors, for d tftéour
! b 1| Tiriy6 pe(he N | color-coded categories.
——=== = attached | _:
........... S
irTiriyé tae ! I====——=——- 1 ‘a‘;iﬁ;:ﬁ‘; ‘ Participant n Test Participant n+1 Training

i ‘Pierced’

1
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Figure 3: Ten spatial relations, as categorizetgvin

languages: Tiriyé and Yéli-Dnye.
Adapted from Levinson & Meira (2003). Figure 4: Example test and training trials from two
consecutive generations of a transmission chain.

=

Additionally, spatial systems across languages tend
support informative communication (Khetarpal et 2013). Participants completed two training sessions incwhi
In l_ooth of thgse respects, space is like color. @l@rit is  o5ch of the 71 TRPS scenes was presented onénag int
unlike color in that it is more complex. Perceptgalor  andom order paired with a color representing thatial
space is defined with respect to just three dinwssihue,  category to which that scene belongs. After twonctsuof
saturation, and lightness. In contrast, the ment&aining, participants were shown the scenes arstiavi
representations underlying the kinds of spatiabttehs gentences a final time, but without the color lakeid
shown in Figure 3 appear to rely on a much widegeaof  cateqgorized each spatial relationship accordinthéoalien
spatial features (Levinson & Meira, 2003; Xu & Kemp language by pressing colored keys to indicate caeg
2010). assignments. Color labels and their locations om th

We considered spatial naming data, collected hotthé  keyboard were counterbalanced across participaittsnw
field and in the lab, relative to a standard stinsuset: the €ach iterated learning chain.
Topological Relations Picture Series (TRPS: Bowerrga As in Xu et al.’s (2013) study, each of the 5 ckaivas
Pederson, 1992). The spatial scenes in Figure S8eahre initialized as a random partition of the 71 TRP8m&s into
from the TRPS. The full TRPS is a set of 71 sucte li four roughly equally-sized categories, which thestfi
drawings depicting different spatial relations. Edmage participants in each chain studied during trainiagd
shows an orange figure object located relative tolawk attempted to reproduce in the following test sessiall
background object. We wished to discover whethlamated subsequent participants in each chain were traoredhe
learning of category systems over these stimuli ldiou responses of the previous participant and wereticstd to
converge toward the spatial systems of naturallaggs, reproduce them as closely as possible, but wereawate
and toward greater informativeness, in a parai¢he color  that any of the data had any connection to otheicgzants.

findings reported above. We excluded any participants whose categorization
accuracy was at or below chance or who reportedthiey
M ethods relied principally on non-spatial information (e.ghe

. . . objects involved) to learn the spatial categories.
Iterated learning of spatial relations. 50 undergraduates at ) ) P 9

UC Berkeley took part in the study in return foass credit, Distance to languages. Analogous to Xu et al. (2013), we
forming 5 transmission chains of 10 generationfieBach ~Measured the dissimilarity between these transtngipatial
participant completed an iterated learning taskiiich they — category systems at each generation, and the lspyggtams
studied and then attempted to recall category msmigts Of languages. Our target languages were a conveien

for 4-category partitions of the 71 TRPS scenes. sample: Arabic, Basque, Chichewa, Dutch, English,
Japanese, Maki, Mandarin Chinese, and Spanish. All the



spatial naming data we drew on from these languages
unpublished. The data were collected either by group

(Arabic, Chichewa, Japanese, Mandarin Chinese, iSpan
or by collaborators who kindly shared their datéhwis and

For comparison, Figure 5 (blue line, right y-axsepws the
average communicative cost of category systemsssacro
generations in our experiment. As in the case tdreohis
quantity also decreases as systems are transniitea

whom we gratefully acknowledge below (remaininggeneration to generation, showing that transmitpditial

languages). All data were collected relative to THePS
scenes. For each language, we assigned to each JiRR&
the spatial term that was applied to that scenethsy
plurality of native speakers interviewed. This prdare

systems become more informative as they are trdiesmi
Moreover, again as in the case of color, this deselosely
tracks the decrease in distance to language, stimgdkat
iterated learning produces spatial systems thatmbke

yielded labels for all TRPS scenes, in each languagthose of languages through a transmission prodest t

Following Xu et al. (2013),
information (VI) to measure the distance betweetegary
systems obtained through iterated learning, andettiound
in these languages.

Communicative cost. In order to assess informativeness for

spatial relations, as for color, we needed an iaddpnt
measure of similarity. We took the similarity betmeany
two spatial relations stimuli to be determined lig+sorting
of those stimuli in a separate study. Khetarpadle{2010)
asked native English speakers to sort the TRPSesdeto
piles based on the similarity of the spatial relaships they
depict. We took the similarity of any two scenesbto the
proportion of participants who sorted those twonsseinto
the same pile in Khetarpal et al.’s (2010) datare@ithis
specification of similarity, we assessed the infatireness
of spatial naming systems following Equations 1-3.

Results

Figure 5 (red line, left y-axis) shows the averaigance
(VI) between the spatial naming systems generdtexlitjh
iterated learning, and those of our language sanmjiés
distance gradually decreases, as the systems apedlby
transmission from generation to generation. Thasnahe
case of color, iterated learning leads to spataming
systems that become increasingly similar to thdssatural
languages.
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Figure 5: Average distance to languages (redyletftis),

and communicative cost (blue; right y-axis) of farial

systems of spatial categories, over generatioitsmaited
learning. Bars indicate standard error of the mean.

we used variation of favors informative categories.

A natural concern is that the participants in our
experiment may have been influenced by their kndgéeof
English, and that the increasing proximity of tlearhed
systems to those of actual languages may have dréam
by English semantic structuring. We feel this cance
should be lessened by three observations (not slore
figure): (1) the learned category systems get megjvely
closer to all languages considered, including thastn
categories that cross-cut English spatial termg; tf2
learned category systems are closer to some @hguages
(e.g. Arabic, Chichewa, and Mandarin Chinese) ttray
are to English; and (3) the same qualitative resalitain
when English is excluded from the set of languaties
which the learned category systems are comparetenGi
this, it seems plausible that the increasing préyinio
languages may have been driven in large part byeusal
semantic tendencies and cognitive forces, ratter by the
English language itself.

Increases in both informativeness and language-like
semantic structuring are illustrated below in Fegé: The
figure shows scenes from a single category at dgyinning
(left panel) and end (right panel) of our experimeXfter
transmission through 10 generations of learnerg th
meaning of the category has been altered througjlofs of
many initial members depicting a wide variety ofasal
relations, down to a set of scenes exemplifyingoaeh
relational category that expresses the notion tiygh
around”, or encirclement and tight fit. This sphtiation is
intuitively clear, yet does not correspond to alErspatial
term in English, the primary language of our p@aats.

Generation 0 Generation 10

Figure 6: Representative scenes showing the semanti
reorganization of a single category over transrorssi



Discussion and conclusions

We have shown that iterated learning produces séenan

systems that tend toward informative category sting¢ and
also toward similarity with human languages. Wael fthis

pattern in two domains—color and spatial relations

suggesting that it may hold more generally acrassains.
To the extent that these findings do generalizey guggest
an answer to Levinson's (2012) question of how idige

category systems across languages assume theity high

informative character.

A number of questions are left open by our findings

Would similar findings have been obtained if we lmaade

other, but still reasonable, assumptions in oumfdization

of informative communication? Do these results edté

other semantic domains? Perhaps most importantiythe

results scale up to transmission in a larger samakext?
These questions are left open for future reseddespite

these caveats, however, our initial findings repadtere do
suggest support for a specific account of the osigif the

semantic diversity seen in the world’s languages, aa
natural result of shared communicative principtgserating

across communities of language learners, and atinoss
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