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Abstract

Gibson et al. (2017) argued that color naming is shaped by patterns of communicative need. In

support of this claim, they showed that color naming systems across languages support more pre-

cise communication about warm colors than cool colors, and that the objects we talk about tend

to be warm-colored rather than cool-colored. Here, we present new analyses that alter this picture.

We show that greater communicative precision for warm than for cool colors, and greater commu-

nicative need, may both be explained by perceptual structure. However, using an information-theo-

retic analysis, we also show that color naming across languages bears signs of communicative

need beyond what would be predicted by perceptual structure alone. We conclude that color nam-

ing is shaped both by perceptual structure, as has traditionally been argued, and by patterns of

communicative need, as argued by Gibson et al. —although for reasons other than those they

advanced.
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1. Introduction

Languages vary widely in the ways they partition colors into categories. At the same

time, this variation is constrained, and similar color naming systems are often seen in

unrelated languages (e.g., Berlin & Kay, 1969; Lindsey & Brown, 2006). The forces that

give rise to this constrained variation have long been debated, and it is often held that a

major role is played by perceptual structure (e.g., Kay & McDaniel, 1978). A variant of

this view emphasizes in addition the importance of communicative forces, and it argues

that languages divide perceptual color space into categories in ways that support efficient

communication (Baddeley & Attewell, 2009; Jameson & D’Andrade, 1997; Lindsey

et al., 2015; Regier et al., 2007; Regier et al., 2015; Zaslavsky et al., 2018).

Recently, Gibson et al. (2017) suggested an even greater role for communicative

forces. They proposed that cross-language commonalities in color naming may reflect

a human need to refer to particular colors more than others, and they presented this

hypothesis as an alternative to one based on perceptual salience (p. 10785). They

showed that color naming systems across languages support more precise communica-

tion about warm colors than cool colors, and that the objects we talk about tend to

be warm-colored rather than cool-colored—suggesting that color naming systems may

have adapted to a general human need to communicate preferentially about warm col-

ors.

Here, we engage this argument and present results that suggest a somewhat different

conclusion. We first present the core of Gibson et al.’s argument in detail and replicate

their findings. We then consider an alternative explanation of their findings and show that

greater communicative precision for warm than for cool colors, and greater need for

warm colors, may both be explained by perceptual structure, without any additional com-

municative preference for warm colors. We next present a novel information-theoretic

analysis of the link between need and communicative precision, and we use that analysis

to infer need from color naming data. On that basis, we show that color naming across

languages bears signs of communicative need beyond what would be predicted by percep-

tual structure alone. We conclude that color naming is shaped both by perceptual struc-

ture, as has traditionally been argued, and by patterns of communicative need, as argued

by Gibson et al.—although our reasons for implicating need are different from theirs.

2. The argument of Gibson et al. (2017)

Gibson et al. found that across languages, warm colors tend to be communicated

more precisely than cool colors. They also found that the objects we talk about tend

to be warm-colored rather than cool-colored, and in that sense warm colors have

higher communicative need. They concluded that the warm–cool asymmetry in com-

municative precision across languages “reflects colors of universal usefulness” and that

the principle of color use “governs how color categories come about”
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(p. 10785). They presented this idea as an alternative to proposals based on perceptual

salience (p. 10785). Below we present the data they considered, and their definitions

of communicative precision and communicative need, which inform our own analyses.

2.1. Data

Gibson et al. based their analysis primarily on color naming data from the World

Color Survey (WCS: Cook, Kay, & Regier, 2005). The WCS dataset contains color nam-

ing data from 110 languages of non-industrialized societies. In the WCS, native speakers

of each language were asked to provide a name for each of 330 color chips. Gibson et al.

analyzed naming data for the subset of 80 color chips shown in Fig. 1, for all WCS

languages and also for three languages for which they collected data: English, Spanish,

and Tsiman�e. For each language l, each color term w in l, and each color chip c, they
estimated the color naming distribution plðwjcÞ as the proportion of speakers of l who
used w rather than some other term to name c.

2.2. Communicative need

A need distribution, reflecting how often a given color c is used in communication,

can be naturally considered a prior distribution p(c) over colors (Regier et al., 2015). Gib-
son et al. considered two priors: a uniform prior and a “salience-weighted prior” (p. 27

of their SI). In the salience-weighted prior, the probability of each color was determined

by the proportion of times that color appeared in a foreground object, rather than in the

background, in their study of natural images. This prior was based on the assumption that

foreground objects are more likely to be talked about than are backgrounds. This sal-

ience-weighted prior exhibits greater probability mass for warm colors than for cool col-

ors (see Fig. 4C).

2.3. Communicative precision

Gibson et al. considered the expected surprisal of a given color c, with respect to a

color naming distribution p(w|c) and a prior p(c), defined by

Fig. 1. The 80 color chips analyzed by Gibson et al. (2017), represented in the standard WCS palette. White

spaces indicate WCS chips that were excluded from the analysis. The achromatic WCS color chips were also

excluded.
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SðcÞ ¼ �
X

w

pðwjcÞ log pðcjwÞ; ð1Þ

where p(c|w) is obtained by applying Bayes’ rule:

pðcjwÞ ¼ pðwjcÞpðcÞP
c0 pðwjc0Þpðc0Þ

: ð2Þ

Lower values of S(c) correspond to higher communicative precision for a given color c.
Gibson et al. found that across languages S(c) tends to be lower for warm colors (reds/

yellows) than for cool colors (blues/greens), when evaluated either with the uniform prior

or with the salience-weighted prior. We replicated these results on very similar data (the

WCS+ dataset; see below) for both priors, as shown in Fig. 3A and 3B.

Notice that S(c) depends both on the prior p(c) and on the naming system p(w|c), and
thus these results are an outcome of the combination of need and language. Here, we fur-

ther explore the nature of this combination in two ways: first by using the same priors as

Gibson et al. while considering new hypothetical color naming data, and second by keep-

ing the color naming data fixed and considering new priors.

3. The role of perceptual structure

The crux of Gibson et al.’s argument is that the warm–cool asymmetry in precision

may reflect the warm–cool asymmetry in need. Another possibility, however, is that both

asymmetries may be produced by a common underlying cause, perhaps perceptual in nat-

ure. Fig. 2 re-plots the 80 colors from Fig. 1 in CIELAB color space, in which the Eucli-

dean distance between nearby colors corresponds roughly to their perceptual dissimilarity

(Brainard, 2003; but see also Komarova & Jameson, 2013). This visualization shows that

there exist potentially relevant perceptual asymmetries of color—and in fact this percep-

tual structure has been used to explain patterns of color naming across languages (Jame-

son & D’Andrade, 1997; Regier et al., 2007, 2015; Zaslavsky et al., 2018). We wished to

understand whether the structure of perceptual color space could also explain the asym-

metry in precision documented by Gibson et al., or that in need, or both—a possibility

acknowledged by Gibson et al. (p. 10789).

To test whether perceptual structure can account for the warm–cool precision asymme-

try, we considered a set of hypothetical color naming systems that were derived solely

from the structure of color space, without any additional element of communicative need.

We began with the color naming data of the WCS, supplemented by data for English

(Lindsey & Brown, 2014); we call this joint dataset WCS+. We considered the same 80

chips used by Gibson et al. Then for each actual language l, we constructed a correspond-

ing hypothetical system by clustering the 80 color chips into kl categories, using the k-
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means algorithm with respect to the Euclidean distance between colors in CIELAB space.

We took kl to be the number of color terms in language l for which at least two speakers

used that term to name the same color chip. In an attempt to avoid local optima, we ran

the k-means algorithm 30 times for each language and retained the best solution. This

procedure yielded a set of artificial color naming systems that are comparable in number

of terms to those in our cross-language data but are determined only by the structure of

perceptual color space, with no additional element of need.

The lower panels of Fig. 3 show that these k-means systems exhibit a warm–cool sur-
prisal asymmetry broadly similar to that in the actual languages, both with the uniform

prior (Fig. 3C) and with the salience-weighted prior (Fig. 3D). In support of this qualita-

tive observation, with the salience-weighted prior, we found a strong correlation

(r = 0.73, p < 0.0001) between S(c) averaged across actual languages and S(c) averaged
across the corresponding k-means systems. With the uniform prior, although an overall

warm–cool asymmetry is visually apparent, there is also a clear discrepancy between the

actual languages and the k-means systems: Light colors tend to have relatively low sur-

prisal in the actual languages, but high surprisal in the k-means systems. In this case we

did not find a significant correlation between average surprisal across actual and k-means

systems when considering all color chips, but we did find a significant correlation

(r = 0.57, p < 0.0001) when focusing specifically on warm and cool colors by excluding

the chips in rows ‘B’ and ‘I’ in Fig. 1A, which correspond roughly to light and dark.

These results suggest that the warm–cool precision asymmetry found for actual languages

under Gibson et al.’s priors may to some extent reflect perceptual structure.

Perceptual structure may also explain the pattern of color use or need that Gibson

et al. reported and captured in their salience-weighted prior itself, according to which

foreground objects (as opposed to their backgrounds) are more likely to be warm-colored

rather than cool-colored. We found that their salience-weighted prior is correlated

(r = 0.49, p < 0.0001) with the distance of each chip from central gray in CIELAB

Fig. 2. The 80 color chips of Fig. 1, represented in CIELAB color space. L� corresponds to lightness, and

hue and saturation are represented in polar coordinates in the orthogonal plane defined by a� and b�. The
irregular distribution of these colors reflects a perceptual asymmetry between warm and cool colors.
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Fig. 3. (A and B) Replication of the results reported by Gibson et al. (2017) for the uniform prior and sal-

ience-weighted prior. Across languages, warm colors have lower expected surprisal than cool colors. (C and

D) Analogous analyses in which each language’s color naming system was replaced by a hypothetical color

naming system obtained by k-means clustering of the color chips represented in CIELAB space. These per-

ceptually derived hypothetical systems also exhibit a warm–cool surprisal asymmetry.
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space,1 suggesting that the salience-weighted prior reflects how “un-gray” and thus per-

ceptually salient different colors are. It is possible that useful objects are often saliently

(warmly) colored so as to attract human attention.

Taken together, these results suggest a possible perceptual common cause for both of the

qualitative asymmetries in communicative precision and communicative need that Gibson

et al. documented. However, these results still leave open the possibility that color naming

across languages may be shaped by an element of need beyond what is predicted by percep-

tual structure. In the following sections we demonstrate an information-theoretic link

between communicative need and precision, and use it to address this open question.

4. Information-theoretic link between need and precision

When viewing language in information-theoretic terms, one often considers a communi-

cation channel between a speaker and a listener (e.g., Baddeley & Attewell, 2009; Gibson

et al., 2013; Plotkin & Nowak, 2000). However, this is not the only potentially relevant

channel. From an information-theoretic perspective, any conditional distribution can be

interpreted as a channel (Cover & Thomas, 2006), and in the present treatment, the lexicon

is captured by the conditional distribution p(w|c), which specifies the probability of using a

color term w for a given color c. Therefore, the lexicon itself can be seen as a channel, and

one may explore the capacity of that channel—that is, the maximal amount of information

about color that can be conveyed by that lexicon.

Formally, the input to this channel is a color c, taken from a set C of colors, and the

output is a word w, taken from a set W of possible words. Here we define C to be the 80

color chips shown in Fig. 1, and W to be an arbitrary set of K words, where K is deter-

mined by the number of color terms in the language. Shannon’s channel coding theorem

(Shannon, 1948) states that the maximal number of bits on average that can be transmit-

ted per channel use is determined by the channel capacity, which is defined as the maxi-

mal mutual information between the input and output, namely by

max
pðcÞ

IðW ;CÞ; ð3Þ

where the maximization is over all possible choices of p(c), and the mutual information is

IðW ;CÞ ¼
X

c;w

pðcÞpðwjcÞ log pðcjwÞ
pðcÞ : ð4Þ

A distribution p(c) over C that attains the channel capacity, that is, a maximizer of Eq.

(3), is called a capacity-achieving prior (CAP). In our case, since C and W are finite sets, a

capacity-achieving prior can be found via the Blahut–Arimoto algorithm (Arimoto, 1972;

Blahut, 1972). This algorithm is based on the fact that by differentiating Eq. (4) with

respect to p(c) we get the following necessary and sufficient2 condition for optimality:
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pðcÞ / expð�SðcÞÞ: ð5Þ

We find it interesting that while Blahut and Arimoto derived the expression for S(c)
from the capacity achieving principle, the same expression has been used for different

reasons by Gibson et al. and others (e.g., Piantadosi et al., 2011). Note that Eq. (5) defines

a self-consistent condition for optimality, because S(c) also depends on the prior. By taking

the log on both sides of Eq. (5) we get that a prior is a CAP if and only if it satisfies

� log pðcÞ ¼ SðcÞ þ logZ; ð6Þ

where Z is the normalization factor of Eq. (5).

Thus, need and communicative precision are linked through the capacity achieving

principle. Specifically, for a capacity-achieving prior, that is, a prior p(c) that maximizes

the information about color that is conveyed by a given lexicon, we should see a simple

linear relationship, with slope 1, between � log p(c) and the expected surprisal (or com-

municative imprecision) S(c). Notice that the link between p(c) and S(c) in Eq. (6)

implies that, ideally, patterns in p(c) would be mirrored in S(c), and thus the link is con-

sistent with Gibson et al.’s findings. However, this link makes a stronger claim in that it

specifies more precisely what the relation between need and precision should be, and it

does so on theoretically motivated grounds. In the next section we use this information-

theoretic link to present new evidence that color naming across languages may indeed

reflect universal patterns of communicative need, as well as perceptual structure.

5. Inferring need from naming data

The capacity achieving principle provides a basis for inferring a theoretically moti-

vated need distribution from color naming data. Concretely, given a color naming system,

this principle allows us to infer what the accompanying need distribution or prior should

be in order to maximize the precision of the given lexicon.

We considered three different priors and assessed their effects in analyses of a single

dataset, WCS+. We inferred a capacity-achieving prior from the WCS+ data itself (WCS-

CAP, Fig. 4A): This is an idealized prior that is implicit in these actual color naming sys-

tems. We similarly inferred a capacity-achieving prior from the artificial naming data

explored above that are derived from k-means clustering (KM-CAP, Fig. 4B): This is an

idealized prior implicit in these artificial systems that are based on perceptual structure

alone. In each case, following Zaslavsky et al. (2018), we evaluated the CAP plðcÞ for

each language l (real or artificial) with respect to its color naming distribution plðwjcÞ,
and averaged together these language-specific priors in order to infer a universal need

distribution.3 That is, we defined
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pðcÞ ¼ 1

L

XL

l¼1

plðcÞ; ð7Þ

where L = 111 is the number of languages in the WCS+ dataset.

For comparison with these inferred priors, we also considered the salience-weighted

prior of Gibson et al. (Fig. 4C), which is not inferred but is instead grounded directly in

the frequency with which colors appear in foreground objects vs. backgrounds in natural

images. For each of these three priors—WCS-CAP, KM-CAP, and salience-weighted—
we entered it as p(c) into Eq. (2), and then used Eq. (1) to obtain the expected surprisal S
(c) for each language in the WCS+ data given that prior. We then assessed each prior in

two ways: first by asking whether we obtain the CAP-predicted linear relationship

between � log p(c) and S(c), and second by sorting chips by S(c) and asking whether we

observe the warm–cool surprisal asymmetry reported by Gibson et al. and also seen in

our Fig. 3.

The results are shown in Fig. 5. Comparing first just the two inferred priors, WCS-

CAP and KM-CAP, we see that the linear relation between � log p(c) and average S(c)
is dissociable from the warm–cool surprisal asymmetry: WCS-CAP shows a linear rela-

tion but not a clear warm–cool asymmetry, whereas KM-CAP shows a clear warm–cool

Fig. 4. Inferred (A: WCS-CAP, B: KM-CAP) and directly measured (C: salience-weighted) priors. Chips

along the x-axis are rank ordered according to p(c). Dashed line corresponds to a uniform prior. KM-CAP

and salience-weighted exhibit a warm–cool asymmetry, whereas WCS-CAP exhibits a weaker tendency for

warm colors and the two most needed colors according to this prior correspond to light and dark.
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asymmetry but not a clear linear relation (r = 0.32, p < 0.01). The presence of a very

clean linear relation for WCS-CAP reassures us that by averaging the language-specific

CAPs, we inferred a universal need distribution largely consistent with Eq. (6).4 It is per-

haps more surprising that the warm–cool asymmetry vanishes under this well-motivated

prior, given that it has persisted under others (recall Fig. 3). The absence of the warm–
cool surprisal asymmetry under WCS-CAP demonstrates the sensitivity of this asymmetry

to the assumed prior. At the same time, the lack of a clear linear relation between

� log p(c) and average S(c) under KM-CAP suggests that this prior is not well-suited for

precise communication using the naturally occurring color naming systems of the WCS+
dataset. KM-CAP is ultimately derived from perceptual structure, whereas WCS-CAP is

derived from the actual WCS+ languages, and both priors are derived using the same

principle. Thus, the difference between them, seen in Figs. 4 and 5, can be attributed to

features in the WCS+ data that are not simply a reflection of perceptual structure.

With this by way of stage-setting, consider now the results for the salience-weighted

prior. It exhibits a warm–cool surprisal asymmetry on the WCS+ data (in fact, this panel

simply replicates Fig. 3B) and also exhibits a roughly linear relation between � log p(c)
and average S(c), with slope close to 1 (r = 0.83, p < 0.0001). This linear relation is sig-

nificant for two reasons. First, the fact that this relation is found for the salience-weighted

prior but not for the perceptually based KM-CAP suggests that the salience-weighted

prior (like WCS-CAP) exhibits signs of need beyond what is predicted by perceptual

structure. Second, this roughly linear relation demonstrates an information-theoretic fit

between cross-language color naming data and this prior, which was independently

empirically obtained by Gibson et al.

6. Discussion

As stated in their title, Gibson et al. (2017) argued that “color naming across languages

reflects color use.” They presented this claim as an alternative to accounts of color nam-

ing based on perceptual salience. In support of this claim, they presented evidence of a

warm–cool asymmetry in communicative need and a corresponding asymmetry in com-

municative precision in color naming across languages—suggesting that color naming

systems may have adapted to a universal human tendency to communicate preferentially

about warm colors. Here, we have cast this argument in a new light. We have shown that

both qualitative asymmetries may be alternatively explained by a common cause: the

structure of perceptual color space. Therefore, these two asymmetries are not an unam-

biguous sign that color naming reflects communicative need.

However, by invoking an information-theoretic principle that links need and precision,

we have also presented a different form of evidence that color naming does in fact bear

traces of universal patterns of communicative need beyond what perceptual factors would

predict. Thus, we agree with Gibson et al. that communicative preferences appear to have

left their imprint on color naming systems in the world’s languages (see also Kemp &

Regier, 2012 for a similar argument concerning kin terminologies). However, we differ with
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Gibson et al. in two respects: first, we reach this conclusion on different grounds, and sec-

ond, we find that communicative need may operate in concert with, rather than as an alterna-

tive to, perceptual structure as a determinant of color naming.

More broadly, there is also another possible connection between perceptual structure and

need. Although we have treated these two as independent factors, it may be the case that the

structure of perceptual color space is itself adapted to the statistics of natural scenes (Shep-

ard, 1994) and in that sense is influenced by need. Even in this case, however, the picture is

not entirely straightforward. There is an important distinction in principle, and thus at least

possibly in practice, between the frequency with which particular colors appear in the world

and the frequency with which they must be communicated. It seems likely that our percep-

tual systems may have adapted to the former, and our languages to the latter.
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Notes

1. We took central gray to be located at the midpoint between the CIELAB coordi-

nates for the two achromatic chips that are most intermediate between black and

white in the WCS palette, namely E0 and F0 (not shown in Fig. 1).

2. This follows from the concavity of I(W;C) in p(c). For more detail see Theo-

rem 2.7.4 and section 10.8 in (Cover & Thomas, 2006).

3. We leave for later investigation the interesting question of language-specific need

influences.

4. By substituting WCS-CAP into equation (6) we introduced a nonlinearity because

the language-specific CAPs are averaged inside the log. In principle, this could

have violated equation (6).
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