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In learning the meanings of words, children are guided

by a set of constraints that give privilege to some

potential meanings over others. These word-learning

constraints are sometimes viewed as part of a specifi-

cally linguistic endowment. However, several recent

computational models suggest concretely how word-

learning – constraints included – might emerge from

more general aspects of cognition, such as associative

learning, attention and rational inference. This article

reviews these models, highlighting the link between

general cognitive forces and the word-learning they

subserve. Ultimately, these cognitive forces might

leave their mark not just on language learning, but also

on language itself: in constraining the space of possible

meanings, they place limits on cross-linguistic semantic

variation.

Learning the meanings of words is a challenging inductive
problem: when a new word is used to refer to some object or
event, it is not clear which aspect of the object or event the
word captures [1]. Young children seem to cope with this
uncertainty by relying on a set of word-learning con-
straints. These constraints bias children toward adopting
particular sorts of meanings for new words – and away
from adopting others. There is considerable evidence for
such word-learning constraints in children [2–5].

These constraints could be viewed as part of a human
predisposition for language – a set of specifically linguistic
semantic expectations, by analogy with the syntactic
expectations that are thought to assist the child in
acquiring grammar [6]. Another possibility, however, is
that word-learning might emerge from cognitive processes
that are not geared specifically for language [7,8], and that
word-learning constraints are linguistic reflections of
these more general processes [9,10].

This emergentist view has been made computationally
concrete by several recent models of word-learning. No
single one of these computational models provides a
comprehensive account of word-learning – but when
viewed as a group, they provide useful insights into
possible mechanisms by which children learn words. This
paper reviews these models, and distills four general
principles from them: (1) general-purpose learning can
account for important aspects of word-learning; (2) word-
learning appears to reflect the use of ‘accelerating
representations’, such that early learning builds

expectations that in turn assist later learning; (3) the
induction of word meaning can be informed both by direct
perceptual experience, and by indirectly inferred semantic
patterns; and (4) emergent constraints on word-learning
can give rise to cross-linguistic semantic universals. These
principles are described in turn, and exemplified through
specific models.

Explaining word-learning through general learning

processes

Many models of word-learning are grounded in general
learning processes, rather than language-specific ones.
Either implicitly or explicitly, these models suggest that
although word-learning constraints are linguistic in
nature, the learning mechanisms they spring from might
not be. Instead, these linguistic constraints might emerge
from general learning processes as they operate on
linguistic experience.

Associative learning

Some word-learning constraints may emerge from associ-
ative learning. An example is the ‘mutual exclusivity’
principle, which holds that if an object has one name, it
should not have another. Such a constraint could poten-
tially be useful in word-learning: mutual exclusivity could
prevent the child from overextending the name ‘cat’ to
include dogs, if the child knew that dogs are named ‘dog’.
There is substantial evidence that children do in fact
respect the mutual exclusivity principle, although it
operates as a soft, probabilistic constraint, rather than a
hard-and-fast rule [2,4]. There are several computational
approaches to mutual exclusivity, showing that this
principle can effectively guide generalization, even in
the case of categories that are not actually mutually
exclusive [11].

How might such a constraint emerge from associative
learning? Consider a simple example: a world in which
there are only two words, ‘dog’ and ‘cat’, each of which
might refer to a DOG, or to a CAT, or to nothing.
Figure 1 shows an associative network, a simple
variant of MacWhinney’s [12] and Merriman’s [10]
competition models, configured to learn which word
names which object.

In this model, each time an object is presented, it
activates the corresponding input node, which projects
activation to the output nodes along weighted associative
connections. When an object is presented together with a
word, the connection between the object and the word isCorresponding author: Terry Regier (regier@uchicago.edu).
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incremented. The activation for a word is the summed
weighted activation from all object nodes, and the
probability of a word being uttered, given an object as
input, is given by normalizing:

pi ¼
ai

X
j

aj

0
@

1
Aþ n

where ai is the activation of word i, and n denotes noise in
the system, and is here set to 0.3 (changing this parameter
would yield different pi values, but would not affect the
qualitative behavior of the model). This equation captures
the idea of competition between words: when one word is
active, others become less likely to be produced. We
initialize all weights to 0.1, and then expose the network to
multiple instances of the object DOG paired with the word
‘dog’. Under this training, the DOG–‘dog’ link grows
stronger with time, and the probability of producing ‘cat’ as
a name for the DOG decreases, as shown in Figure 2. This
is a mutual exclusivity effect: the DOG already has a name

(‘dog’), which makes another name less likely. Merriman
[10] has shown that this simple associative structure, with
a competitive output rule, accounts for a variety of
empirically observed mutual exclusivity effects.

Associative models have also accounted for many other
aspects of word-learning, including the linking of sound
and meaning [13–16], the perceptual grounding of mean-
ing [11,17,18], language dysfunction [16,19], generalization
patterns [17,20,21], and the effect of word co-occurrence
patterns on word-learning [22,23]. Several of these models
are discussed later in this review [11,13,17,22,23].

Bayesian inference

Bayesian models [24–26] are another genre of word-
learning models built on general-purpose processes of
induction. In addition, these models address the question
of whether word-learning is rational, in the sense that it
conforms to the normative standard of probabilistic
inference given by Bayes’ rule:

pðH=oÞ / pðo=HÞpðHÞ:

Here H is a hypothesis, and o is observed evidence.
Tenenbaum and Xu’s [24] Bayesian model of word-learning
assumes that a single word – let’s say ‘cat’ – is being
learned. Each hypothesis H then corresponds to a possible
meaning for ‘cat’, specified as a set of objects, for example
{CAT} (the correct meaning), or {CAT or DOG} (an overly
broad meaning). The learner must determine how prob-
able each meaning is, given observations of objects being
named ‘cat’. At the core of this model is the assumption
that each time a word is used, the particular object that it
refers to was drawn randomly from the set of objects that
constitutes the word’s meaning. Thus, the likelihood of
seeing ‘cat’ used to label some object o, on the hypothesis
that the meaning of ‘cat’ is H, is:

pðo=HÞ ¼

1

lHl
if o [ H

0 otherwise

8><
>:

where lHl denotes the number of objects in the set H. This
simple idea can constrain word-learning: when the word
‘cat’ is applied to a CAT, this likelihood gives greater
weight to narrow meanings like {CAT} than it does to
broader meanings like {CAT or DOG}, because narrow
meanings encompass fewer objects (lHl is smaller). This
preference for narrow meanings is coupled with a prior
p(H) that favors meanings that are dissimilar from others
– on the intuition that more distinctive meanings are more
deserving of a name. The model accounts well for adults’
generalization behavior, when given 1–3 exposures to
exemplars of a new word (‘fast mapping’ [27,28]). Niyogi
extends this approach to account for the influence of
syntax on the generalization of newly-learned words [26].

Interestingly, we can combine the insights of Mac-
Whinney’s competition model [12] and Tenenbaum and
Xu’s Bayesian model [24] to arrive at a Bayesian account
of the mutual exclusivity principle. Thus, this word-
learning constraint might not only be emergent, as we
have already seen; it may also be rational, as shown
in Box 1.

Fig. 1. An associative network, configured to learn the words ‘dog’ and ‘cat’.
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Fig. 2. Mutual exclusivity emerging from lexical competition in an associative com-

petition model, and in a Bayesian model. In both models, the probability of using

the word ‘cat’ to describe a DOG decreases with the number of times the DOG has

instead been named a ‘dog’.
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Accelerating representations

In some word-learning models, early learning produces
expectations that enable faster subsequent learning –
which further strengthens the expectations, leading to yet
faster learning. We may think of these expectations as
‘accelerating representations’: they permit a slow entry
into word-learning to give way to accelerated learning as
the expectations gradually become more accurate
(cf. ‘autonomous bootstrapping’ [29]). This concept could
help to explain the vocabulary spurt – a sometimes sudden
increase in the rate and ease with which one-year-old
children learn words. The vocabulary spurt is sometimes
taken to suggest a conceptual insight into the referential
nature of words [30,31] – but it might instead reflect the
child’s increasingly accurate expectations about the form
and content of words.

Regier et al.’s associative word-learning model illus-
trates this idea [13]. In this model, word forms and word
meanings reside in separate similarity spaces, and are
linked through bi-directional associative connections.

At the heart of the model is the concept of memory
interference: similar sounds (e.g. ‘cat’ and ‘cad’) interfere
with each other in memory and are easily confused; the
same is true of similar meanings (e.g. {CAT} and {DOG}).
Early in learning, all words and meanings are somewhat
similar, and the resulting interference hampers word-
learning. However, this is soon alleviated. Word-learning
drives selective attention preferentially toward dimen-
sions of form that are predictive of meaning, and toward
dimensions of meaning that are predictive of form. For
instance, when learning object names, attention would be
allocated to object shape, but not color – because shape,
unlike color, is a good predictor of object name. (The model

assumes that syntactic and other cues indicate which
general class of names, e.g. object names, is being learned.)
This attentional deployment effectively ‘stretches’ predic-
tive dimensions, but ‘compresses’ non-predictive ones
[10,32–34], as shown in Fig. 3. The result is that stimuli
cluster together in categories that are psychologically
distant from each other – and therefore no longer interfere
with each other, enhancing future learning. An entirely
analogous process causes word forms to cluster into
categories corresponding to individual words, highlighting
relevant differences (e.g. voicing) but downplaying
irrelevant ones (e.g. pitch, in English).

Attention here is an accelerating representation. It is
both driven by word-learning, and the enabler of increas-
ingly fast subsequent learning [34], through a reduction in
memory interference. This subsequent learning then
further strengthens attention, which further accelerates
learning. This simple dynamic provides a unified account
of four roughly simultaneous changes in word-learning
ability that children undergo during the second year of life
[13]. First, they shift from slow learning, requiring 9–12
training trials to learn a word for an object [35,36], to one-
trial learning, or ‘fast mapping’ [27,28] – accounted for by
the reduction in interference. Second, young children can
map two words to two different objects only if the words
sound quite different, and not if they sound similar –
whereas slightly older children can learn similar or
dissimilar pairs of words [37,38]. Here, the explanation
is that the initial interference from the early compressed-
ness of space will be exacerbated by any similarity between
the word forms, making similar-sounding words especially
vulnerable; this extreme interference is eventually
reduced through attentional stretching. Analogously,

Box 1. Mutual exclusivity as rational inference

Consider a world of two words, ‘dog’ and ‘cat’, in which each word can

mean either nothing, {DOG}, or {CAT}. Table I shows the resulting

hypothesis space.

We assume a uniform prior p(H) for simplicity, and a likelihood that

captures random sampling of naming events from a hypothesis.

(Tenenbaum and Xu [24] address the case of a single word applying

to several referents; we apply their random selection principle to the

inverse case of several words applying to one referent.) Specifically, to

determine the likelihood of observing word w being used to name

object o given hypothesis H, we first randomly select an object o from

the world (either DOG or CAT, each with probability 1/2), and then

randomly select a word from among those that can name o in H. Thus:

pððw ;oÞlHÞ ¼

1

2lNl
if w is a name for o in H

0 otherwise

8><
>:

where lNl is the number of names available in H for object o. Critically,

the likelihood of a word-object pairing is lower the more names a

hypothesis specifies for the object; thus, hypotheses that violate mutual

exclusivity have lower likelihoods. Given this prior and likelihood, we

may use Bayes’ rule to determine the probability of each hypothesis

given a set of observations. From this, we can determine the conditional

probability of using word w given object o and accumulated evidence e,

through a weighted average across hypotheses:

pðw lo; eÞ ¼
X

i

pðw lo;Hi ÞpðHi leÞ

where p(wlo,H) is also determined by randomly selecting a name for o:

its value is 1/lNl if w is a name for o in H, and zero otherwise.

This model, like the competition model, exhibits a mutual exclusivity

effect: as the model sees the DOG repeatedly labeled ‘dog’, the

conditional probability of using ‘cat’ given the object DOG decreases

(see Fig. 2 in main text). This constrains generalization, in a manner that

is seen in children. In both models, the effect of mutual exclusivity

emerges from competition [12] between words – in the output rule of

the competition model, and in the random selection of a name in the

Bayesian model.

Table I. The hypothesis space for a model containing the two words

‘dog’ and ‘cat’ a

H ‘dog’ ‘cat’ p((‘dog’,DOG)lH)

0 none None 0

1 none CAT 0

2 none DOG 0

3 CAT None 0

4 CAT CAT 0

5 CAT DOG 0

6 DOG None 1/(2lNl) ¼ 1/(2 £ 1) ¼ 1/2

7 DOG CAT 1/(2lNl) ¼ 1/(2 £ 1) ¼ 1/2

8 DOG DOG 1/(2lNl) ¼ 1/(2 £ 2) ¼ 1/4

aFor each hypothesis (H), the meaning of the words ‘dog’ and ‘cat’ are given,

together with the likelihood of seeing a DOG labeled ‘dog’, given H.
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this dynamic can account for children’s early inability to
learn synonyms, followed by a later ability to learn them
[39]. Again, there is initially exacerbated interference, this
time due to the semantic similarity (identity) between
synonyms,and again, overall interference lessens as space
stretches, allowing learning. In this case, however, the
synonym-induced component of interference is unaffected
by stretching, because the two meanings are the same, not
just similar. This residual interference means that
although synonyms can eventually be learned, there is a
persisting resistance to them, as there is in children [2,4].
Finally, the increased attention to predictive dimensions
also accounts for children’s growing tendency to generalize
new object nouns on the basis of object shape [36,40].

Another example of accelerating representations can be
found in Siskind’s [41] word-learning model. This model,
which learns to link words with symbolically-represented
conceptual structures (see also [42]), exhibits slow initial
learning, requiring several exposures before a word is
learned, followed by later one-trial learning. As words are
learned for some concepts, that leaves fewer concepts
unnamed, yielding a smaller hypothesis space – and a
simpler inductive problem – for later word-learning.
Plunkett et al.’s connectionist model of word-learning
[17] also exhibits an acceleration in learning, owing to the
development of internal representations that capture
widely shared patterns of variation in the input. Yet
another example is found in Bayesian models: the
posterior probability after one observation is often taken

as the prior probability for the next observation – this can
also be seen as an accelerating representation.

Grounding meaning in the world and in words

Several computational models ground words in percep-
tual representations of objects and events in the world
[11,17,18,43–45]. Most others ground word meaning in
more abstract featural representations, but still on the
assumption that there is some concrete element of
experience to which the word is being linked.

However, much word-learning does not occur in this
fashion – people eventually learn words for things that are
not grounded in their personal experience at all
(e.g. ‘prehistoric’). Instead, we acquire much of our
knowledge of word meanings through reading, inferring
the meanings of new words from their textual context.
Landauer and Dumais [22] (see also Burgess and Lund
[46]) present a model of this process. Their approach,
latent semantic analysis (LSA), induces knowledge of the
meanings of English words given only a large corpus of
English text. The central concept is that the more similar
two words are in meaning, the more likely they are to
appear in the company of the same set of other words,
across different chunks of text. The input to LSA is a
matrix in which each row represents an English word,
each column represents a chunk of text (e.g. a paragraph),
and the cell holds the frequency with which that word
occurs in that chunk. LSA then re-represents these co-
occurrence data in a space of reduced dimensionality. Each
word is represented as a vector in this space, indirectly
capturing the textual contexts in which the word can be
used. Semantic similarity between two words is measured
by the angle between their vectors. LSA was trained using
4.6 million words of text taken from an encyclopedia.
Given a standardized test of synonyms, it then performed
comparably to foreign-born applicants to US colleges.

More importantly, however, it suggested a solution to a
core puzzle in language induction, concerning the rate at
which words are learned. Schoolchildren, in reading, add
one new word to their comprehension vocabularies every
five paragraphs or so – an impressive rate. LSA roughly
matched this rate of acquisition, and did so in an
illuminating manner. For the model, a paragraph of text
had a greater effect on the learning of words that were not
in that paragraph than on those that were. Thus, if people
learn in an analogous fashion, the high speed of vocabulary
acquisition through reading can be explained in part
through the effects of indirect learning. The general
picture that emerges from LSA is one of multiple weak
constraints among the meanings of different words, such
that information concerning one word can effect the entire
web of interrelated meanings.

Syntactic context is another potentially powerful clue to
meaning, and is also available in the surface form of text.
Some models [23,26] exploit this fact, relying on syntactic
cues to set semantic expectations concerning the meanings
of words that are being learned.

Constraints and semantic universals

Word-learning constraints are a possible source of
cross-linguistic semantic universals. For if words are

Fig. 3. Selective attention in word-learning. This psychological space has two

dimensions – shape and color – and has four stimuli located in it: a red ball, a

green ball, a red box, and a green box. The stimuli are shown before and after

selective attention has been allocated toward the shape dimension and away from

the color dimension. This allocation makes shape differences psychologically sali-

ent, and color differences less so, yielding the categories BALL and BOX, and facili-

tating the learning of new object names also based on shape.
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learned in the same constrained manner across languages,
the meanings of words in different languages should bear
some mark of the constraints that produced them.

Regier’s connectionist model of spatial term learning
[11] illustrates this idea. The model learns to categorize
spatial events according to the spatial system of a given
target language. Because languages differ in their spatial
categorization Scheme, the model must accommodate a
variety of linguistic structurings of space.

The search for a simple model led to one with a
constraint on its operation: fine-grained spatial distinc-
tions are learned more reliably at event endpoints than at
event beginnings. This predicts a semantic universal
tendency: across languages, spatial terms describing
motion into some spatial configuration should tend to be
more semantically specific than words describing motion
out of that configuration – because the configuration is
present at endpoint only for the ‘motion-in’ term. An
English example is the term ‘on top of ’. This spatial term is
semantically finer than its opposite ‘off ’ – because ‘off ’ can
refer to removal from the top, side, or bottom of an object
(e.g. ‘take it off the wall’).

There is empirical support for this account. Zheng and
Regier (in preparation) have found that adults perceive
spatial distinctions more clearly at event endpoints than at
event beginnings. They also found that adult native
speakers of each of English, Chinese and Japanese, who
described a set of simple spatial actions, tended to use
semantically narrower spatial terms for motion-in events
than for analogous motion-out events, as predicted. Finally,
Bowerman has found that children learning different
languages tend to overgeneralize words for motion-out
more than they do words for motion-in [47]. These results
highlight the potential for computational models of con-
strained word-learning to explain regularities in semantic
structure across languages, not just within them.

Objections and limitations

Many of the models discussed in this review assume an
associative basis of some sort for word-learning. This basic
assumption is one that has encountered two broad sorts of
objection.

The first objection is that word-learning is too fast to be
a reflection of an associative or statistical process [8,30,31].

As we have seen, children can eventually learn a new word
given only a very few exposures. But is this really a
problem? It is true that one often thinks of associative
learning as requiring multiple exposures and gradual
learning, but we have seen that one-trial learning can be
exhibited by associative [13] as well as probabilistic [24]
word-learning models. Thus speed in and of itself is not a
strong argument against associative – or more generally,
statistical – learning.

A more pointed objection is that in learning words,
children do not passively link words with whatever they
see when the words are spoken [8,48]. Instead, they appear
to actively impose social interpretations on the behavior of
other people, and to rely on their knowledge of others’
mental states to guide their word-learning [49,50]. A
related objection is that non-human animals, who might
lack some of these social abilities but are certainly capable
of associative learning, do not learn words [50,51].

This objection is compelling, and constitutes a strong
argument for the centrality of social understanding in
word-learning (see also Questions for future research).
However, it does not argue against the reasonable idea
that social cues and associative learning can operate
together, and that word-learning might emerge from the
collaboration of species-specific social sensitivities and
widely-shared general learning mechanisms. Given the
simplicity, independent motivation, and explanatory
power of associative models, this idea seems well worth
pursuing. One intriguing possibility is that social cues
might act in part to filter out irrelevant aspects of
experience, and to focus the child’s attention on a word
on the one hand, and a referent on the other, so that these
two are linked through association.

Conclusions

Word-learning is generally thought to be an underdeter-
mined inductive problem, such that children require a set
of constraints to tackle it. This view has been bolstered by
the considerable empirical evidence for such constraints.
However, several recent computational models of word-
learning suggest that these constraints need not spring
from language-specific forces. General-purpose learning
mechanisms, accelerating representations, and perceptual
and textual forces might all combine to constrain word-
learning, and cross-linguistic variation in meaning. As
computational models of word-learning continue to draw
on constraints that spring from a variety of such sources,
including social cues, they will help to explain how the very
center of language – the link between form and meaning –
builds on the rest of cognition.
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