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Abstract

The Sapir-Whorf hypothesis holds that our thoughts are shaped by our native language, and that speakers of
different languages therefore think differently. This hypothesis is controversial in part because it appears to deny
the possibility of a universal groundwork for human cognition, and in part because some findings taken to support
it have not reliably replicated. We argue that considering this hypothesis through the lens of probabilistic inference
has the potential to resolve both issues, at least with respect to certain prominent findings in the domain of color
cognition. We explore a probabilistic model that is grounded in a presumed universal perceptual color space and
in language-specific categories over that space. The model predicts that categories will most clearly affect color
memory when perceptual information is uncertain. In line with earlier studies, we show that this model accounts
for language-consistent biases in color reconstruction from memory in English speakers, modulated by uncertainty.
We also show, to our knowledge for the first time, that such a model accounts for influential existing data on
cross-language differences in color discrimination from memory, both within and across categories. We suggest
that these ideas may help to clarify the debate over the Sapir-Whorf hypothesis.

Introduction

The Sapir-Whorf hypothesis [1, 2] holds that our thoughts are shaped by our native language, and that speakers
of different languages therefore think about the world in different ways. This proposal has been controversial
for at least two reasons, both of which are well-exemplified in the semantic domain of color. The first source of
controversy is that the hypothesis appears to undercut any possibility of a universal foundation for human cognition.
This idea sits uneasily with the finding that variation in color naming across languages is constrained, such that
certain patterns of color naming recur frequently across languages [3–5], suggesting some sort of underlying
universal basis. The second source of controversy is that while some findings support the hypothesis, they do
not always replicate reliably. Many studies have found that speakers of a given language remember and process
color in a manner that reflects the color categories of their language [6–13]. Reinforcing the idea that language is
implicated in these findings, it has been shown that the apparent effect of language on color cognition disappears
when participants are given a verbal [7] (but not a visual) interference task [8, 11, 12]; this suggests that language
may operate through on-line use of verbal representations that can be temporarily disabled. However, some of
these findings have a mixed record of replication [14–17]. Thus, despite the substantial empirical evidence already
available, the role of language in color cognition remains disputed.
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Fig 1. Model overview. A stimulus is encoded in two ways: (1) a fine-grained representation of the stimulus
itself, shown as a (gray) distribution over stimulus space centered at the stimulus’ location in that space, and (2)
the language-specific category (e.g. English “green”) in which the stimulus falls, shown as a separate (green)
distribution over the same space, centered at the category prototype. The stimulus is reconstructed by combining
these two sources of information through probabilistic inference, resulting in a reconstruction of the stimulus (black
distribution) that is biased toward the category prototype. Adapted from Figure 11 of Bae et al. (2015) [20].

An existing theoretical stance holds the potential to resolve both sources of controversy. On the one hand,
it explains effects of language on cognition in a framework that retains a universal component, building on a
proposal by Kay and Kempton [7]. On the other hand, it has the potential to explain when effects of language
on color cognition will appear, and when they will not—and why. This existing stance is that of the “category
adjustment” model of Huttenlocher and colleagues [18, 19]. We adopt this stance, and cast color memory as
inference under uncertainty, instantiated in a category adjustment model, following Bae et al. [20] and Persaud
and Hemmer [21]. The model holds that color memory involves the probabilistic combination of evidence from two
sources: a fine-grained representation of the particular color seen, and the language-specific category in which it
fell (e.g. English green). Both sources of evidence are represented in a universal perceptual color space, yet their
combination yields language-specific bias patterns in memory, as illustrated in Fig 1. The model predicts that such
category effects will be strongest when fine-grained perceptual information is uncertain. It thus has the potential
to explain the mixed pattern of replications of Whorfian effects in the literature: non-replications could be the
result of high perceptual certainty.

In the category adjustment model, both the fine-grained representation of the stimulus and the category in which it
falls are modeled as probability distributions over a universal perceptual color space. The fine-grained representation
is veridical (unbiased) but inexact: its distribution is centered at the location in color space where the stimulus
itself fell, and the variance of that distribution captures the observer’s uncertainty about the precise location of
the stimulus in color space, with greater variance corresponding to greater uncertainty. Psychologically, such
uncertainty might be caused by noise in perception itself, by memory decay over time, or by some other cause—and
any increase in such uncertainty is modeled by a wider, flatter distribution for the fine-grained representation. The
category distribution, in contrast, captures the information about stimulus location that is given by the named
category in which the stimulus fell (e.g. green for an English-speaking observer). Because named color categories
vary across languages, this category distribution is assumed to be language-specific—although the space over
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Fig 2. Category effects from biased reconstruction. Model reconstructions tend to be biased toward
category prototypes, yielding enhanced distinctiveness for two stimuli that fall on different sides of a category
boundary. Categories are shown as distributions in green and blue; stimuli are shown as vertical black lines;
reconstruction bias patterns are shown as arrows.

which it exists is universal. The model infers the original stimulus location by combining evidence from both of
these distributions. As a result, the model tends to produce reconstructions of the stimulus that are biased away
from the actual location of the stimulus and toward the prototype of the category in which it falls.

As illustrated in Fig 2, this pattern of bias pulls stimuli on opposite sides of a category boundary in opposite
directions, producing enhanced distinctiveness for such stimuli. Such enhanced distinctiveness across a category
boundary is the signature of categorical perception, or analogous category effects in memory. On this view,
language-specific effects on memory can emerge from a largely universal substrate when one critical component of
that substrate is language-specific: the category distribution.

If supported, the category adjustment model holds the potential to clarify the debate over the Sapir-Whorf
hypothesis in three ways. First, it would link that debate to independent principles of probabilistic inference. In
so doing, it would underscore the potentially important role of uncertainty, whether originating in memory or
perception, in framing the debate theoretically. Second, and relatedly, it would suggest a possible reason why
effects of language on color memory and perception are sometimes found, and sometimes not [17]. Concretely,
the model predicts that greater uncertainty in the fine-grained representation—induced for example through a
memory delay, or noise in perception—will lead to greater influence of the category, and thus a stronger bias in
reproduction. The mirror-image of this prediction is that in situations of relatively high certainty in memory or
perception, there will be little influence of the category, to the point that such an influence may not be empirically
detectable. Third, the model suggests a way to think about the Sapir-Whorf hypothesis without jettisoning the
important idea of a universal foundation for cognition.

Closely related ideas appear in the literature on probabilistic cue integration [22–25]. For example, Ernst and
Banks [24] investigated perceptual integration of cues from vision and touch in judging the height of an object.
They found that humans integrate visual and haptic cues in a statistically optimal fashion, modulated by cue
certainty. The category adjustment model we explore here can be seen as a form of probabilistic cue integration in
which one of the cues is a language-specific category.

The category adjustment model has been used to account for category effects in various domains, including
spatial location [18, 26], object size [19, 27], and vowel perception [28]. The category adjustment model also bears
similarities to other theoretical accounts of the Sapir-Whorf hypothesis that emphasize the importance of verbal
codes [7,8], and the interplay of such codes with perceptual representations [29–31]. Prior research has linked such
category effects to probabilistic inference, following the work of Huttenlocher and colleagues [18, 19]. Roberson
and colleagues [32] invoked the category adjustment model as a possible explanation for categorical perception
of facial expressions, but did not explore a formal computational model; Goldstone [33] similarly referenced the
category adjustment model with respect to category effects in the color domain. Persaud and Hemmer [21, 34]
explored bias in memory for color, and compared empirically obtained memory bias patterns from English speakers
with results predicted by a formally specified category adjustment model, but did not link those results to the
debate over the Sapir-Whorf hypothesis, and did not manipulate uncertainty. More recently, a subsequent paper
by the same authors and colleagues [35] explored category-induced bias in speakers of another language, Tsimané,
and did situate those results with respect to the Sapir-Whorf hypothesis, but again did not manipulate uncertainty.
Most recently, Bae et al. [20] extensively documented bias in color memory in English speakers, modeled those
results with a category-adjustment computational model, and did manipulate uncertainty—but did not explore
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Fig 3. Screenshots of example trials illustrating (A) simultaneous reconstruction, (B) delayed reconstruction, and
(C) green goodness rating.

these ideas relative to the Sapir-Whorf hypothesis, or to data from different languages.

In what follows, we first present data and computational simulations that support the recent finding that color
memory in English speakers is well-predicted by a category adjustment model, with the strength of category effects
modulated by uncertainty. We then show, to our knowledge for the first time, that a category adjustment model
accounts for influential existing cross-language data on color that support the Sapir-Whorf hypothesis.

Analyses

In this section we provide general descriptions of our analyses and results. Full details are supplied in the section
on Materials and Methods.

Study 1: Color reconstruction in English speakers

Our first study tests the core assumptions of the category adjustment model in English speakers. In doing so, it
probes questions that were pursued by two studies that appeared recently, after this work had begun. Persaud and
Hemmer [21] and Bae et al. [20] both showed that English speakers’ memory for a color tends to be biased toward
the category prototype of the corresponding English color term, in line with a category adjustment model. Bae et
al. [20] also showed that the amount of such bias increases when subjects must retain the stimulus in memory
during a delay period, compared to when there is no such delay, as predicted by the principles of the category
adjustment model. In our first study, we consider new evidence from English speakers that tests these questions,
prior to considering speakers of different languages in our following studies.

English-speaking participants viewed a set of hues that varied in small steps from dark yellow to purple, with most
hues corresponding to some variety of either green or blue. We collected two kinds of data from these participants:
bias data and naming data. Bias data were based on participants’ non-linguistic reconstruction of particular colors
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seen. Specifically, for each hue seen, participants recreated that hue by selecting a color from a color wheel, either
while the target was still visible (Fig 3A: simultaneous condition), or from memory after a short delay (Fig 3B:
delayed condition). We refer to the resulting data as bias data, because we are interested in the extent to which
participants’ reconstructions of the stimulus color are biased away from the original target stimulus. Afterwards,
the same participants indicated how good an example of English green (as in Fig 3C) and how good an example of
English blue each hue was. We refer to these linguistic data as naming data.

Fig 4 shows both naming and bias data as a function of target hue. The top panel of the figure shows the naming
data and also shows Gaussian functions corresponding to the English color terms green and blue that we fitted to
the naming data. Bias data were collected for only a subset of the hues for which naming data were collected,
and the shaded region in the top panel of Fig 4 shows that subset, relative to the full range of hues for naming
data. We collected bias data only in this smaller range because we were interested specifically in bias induced
by the two color terms blue and green, and colors outside the shaded region seemed to us to clearly show some
influence of neighboring categories such as yellow and purple. The bottom panel of the figure shows the bias data,
plotted relative to the prototypes (means) of the fitted Gaussian functions for green and blue. It can be seen
that reconstruction bias appears to be stronger in the delayed than in the simultaneous condition, as predicted,
and that—especially in the delayed condition—there is an inflection in the bias pattern between the two category
prototypes, suggesting that bias may reflect the influence of each of the two categories. The smaller shaded region
in this bottom panel denotes the subset of these hues that we subsequently analyzed statistically, and to which
we fit models. We reduced the range of considered hues slightly further at this stage, to ensure that the range
was well-centered with respect to the two relevant category prototypes, for green and blue, as determined by the
naming data.

The absolute values (magnitudes) of the bias were analyzed using a 2 (condition: simultaneous vs. delayed) ×
15 (hues) repeated measures analysis of variance. This analysis revealed significantly greater bias magnitude in
the delayed than in the simultaneous condition. It also revealed that bias magnitude differed significantly as a
function of hue, as well as a significant interaction between the factors of hue and condition. The blue stars in
Fig 4 denote hues for which the difference in bias magnitude between the simultaneous and delayed conditions
reached significance. The finding of greater bias magnitude in the delayed than in the simultaneous condition is
consistent with the proposal that uncertainty is an important mediating factor in such category effects, as argued
by Bae et al. [20]. It also suggests that some documented failures to find such category effects could in principle
be attributable to high certainty, a possibility that can be explored by manipulating uncertainty.

We wished to test in a more targeted fashion to what extent these data are consistent with a category adjustment
model in which a color is reconstructed based in part on English named color categories. To that end, we compared
the performance of four models against these data; only one of these models considered both of the relevant
English color categories, green and blue. As in Fig 1, each model contains a fine-grained but inexact representation
of the perceived stimulus, and (for most models) a representation of one or more English color categories. Each
model predicts the reconstruction of the target stimulus from its fine-grained representation of the target together
with any category information. Category information in the model is specified by the naming data. Each model
has a single free parameter, corresponding to the uncertainty of the fine-grained representation; this parameter is
fit to bias data.

� The null model is a baseline model that predicts hue reconstruction based only on the fine-grained represen-
tation of the stimulus, with no category component.

� The 1-category (green) model predicts hue reconstruction based on the fine-grained representation of the
stimulus, combined with a representation of only the green category, derived from the green naming data.

� The 1-category (blue) model predicts hue reconstruction based on the fine-grained representation of the
stimulus, combined with a representation of only the blue category, derived from the blue naming data.

� The 2-category model predicts hue reconstruction based on the fine-grained representation of the stimulus,
combined with representations of both the green and blue categories.

If reproduction bias reflects probabilistic inference from a fine-grained representation of the stimulus itself, together
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Fig 4. Naming and bias data, Study 1. In both top and bottom panels, the horizontal axis denotes target hue,
ranging from yellow on the left to purple on the right. Top panel (naming data): The solid green and blue curves
show, for each target hue, the average goodness rating for English green and blue respectively, as a proportion of
the maximum rating possible. The dashed green and blue curves show Gaussian functions fitted to the naming
goodness data. The dotted vertical lines marked at the bottom with green and blue squares denote the prototypes
for green and blue, determined as the means of the green and blue fitted Gaussian functions, respectively. The
shaded region in the top panel shows the portion of the spectrum for which bias data were collected. Bottom
panel (bias data): Solid curves denote, for each target hue, the average reconstruction bias for that hue, such that
positive values denote reconstruction bias toward the purple (here, right) end of the spectrum, and negative values
denote reconstruction bias toward the yellow (here, left) end of the spectrum. Units for the vertical axis are the
same as for the horizontal axis, which is normalized to length 1.0. The black and red curves show bias under
simultaneous and delayed response, respectively. Blue stars at the top of the bottom panel mark hues for which
there was a significant difference in the magnitude of bias between simultaneous and delayed conditions. The
shaded region in the bottom panel shows the portion of the data that was analyzed statistically, and to which
models were fit. In both panels, error bars represent standard error of the mean.

with any relevant category, we would expect the 2-category model to outperform the others. The other models
have access either to no category information at all (null model), or to category information for only one of the
two relevant color categories (only one of green and blue). The 2-category model in contrast combines fine-grained
stimulus information with both of the relevant categories (green and blue); this model thus corresponds most
closely to a full category adjustment model.

Fig 5 redisplays the data from simultaneous and delayed reconstruction, this time with model fits overlaid. The
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Fig 5. Bias in color reconstruction, and model fits, Study 1. Left column: Bias from simultaneous
reconstruction, fit by each of the four models. The empirical data (black lines with error bars) in these four panels
are the same, and only the model fits (red lines) differ. Within each panel, the horizontal axis denotes target hue,
and the vertical axis denotes reconstruction bias. The green and blue prototypes are indicated as vertical lines
with green and blue squares at the bottom. Right column: delayed reconstruction, displayed analogously.

panels in the left column show data from simultaneous reconstruction, fit by each of the four models, and
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Table 1. Model fits to reconstruction data, Study 1. LL = log likelihood (higher is better). MSE = mean squared
error (lower is better). The best value in each row is shown in bold.

Measure Null 1-cat. (G) 1-cat. (B) 2-cat.
Simultaneous LL 2530 2290 2510 2590

MSE 0.00011 0.00057 0.00015 0.00008
Delayed LL 1860 1650 1900 1980

MSE 0.00099 0.00160 0.00061 0.00042

the panels in the right column analogously show data and model fits from delayed reconstruction. Visually, it
appears that in the case of delayed reconstruction, the 2-category model fits the data at least qualitatively better
than competing models: it shows an inflection in bias as the empirical data do, although not as strongly. For
simultaneous reconstruction, the 2-category model fit is also reasonable but visually not as clearly superior to the
others (especially the null model) as in the delayed condition.

Table 1 reports quantitative results of these model fits. The best fit is provided by the 2-category model, in
both the simultaneous and delayed conditions, whether assessed by log likelihood (LL) or by mean squared errror
(MSE). In line with earlier studies [20, 21], these findings demonstrate that a category adjustment model that
assumes stimulus reconstruction is governed by relevant English color terms provides a reasonable fit to data on
color reconstruction by English speakers. The category adjustment model fits well both when the category bias is
relatively slight (simultaneous condition), and when the bias is stronger (delayed condition).

Study 2: Color discrimination across languages

The study above examined the categories of just one language, English, whereas the Sapir-Whorf hypothesis
concerns cross-language differences in categorization, and their effect on cognition and perception. Empirical work
concerning this hypothesis has not specifically emphasized bias in reconstruction, but there is a substantial amount
of cross-language data of other sorts against which the category adjustment model can be assessed. One method
that has been extensively used to explore the Sapir-Whorf hypothesis in the domain of color is a two-alternative
forced choice (2AFC) task. In such a task, participants first are briefly shown a target color, and then shortly
afterward are shown that same target color together with a different distractor color, and are asked to indicate
which was the color originally seen. A general finding from such studies [8–10] is that participants exhibit enhanced
discrimination for pairs of colors that would be named differently in their native language. For example, in such a
2AFC task, speakers of English show enhanced discrimination for colors from the different English categories green
and blue, compared with colors from the same category (either both green or both blue) [8]. In contrast, speakers
of the Berinmo language, which has named color categories that differ from those of English, show enhanced
discrimination across Berinmo category boundaries, and not across those of English [9]. Thus color discrimination
in this task is enhanced at the boundaries of native language categories, suggesting an effect of those native
language categories on the ability to discriminate colors from memory.

Considered informally, this qualitative pattern of results appears to be consistent with the category adjustment
model, as suggested above in Fig 2. We wished to determine whether such a model would also provide a good
quantitative account of such results, when assessed using the specific color stimuli and native-language naming
patterns considered in the empirical studies just referenced.

We considered cross-language results from two previous studies by Debi Roberson and colleagues, one that
compared color memory in speakers of English and Berinmo, a language of Papua New Guinea [9], and another
that explored color memory in speakers of Himba, a language of Namibia [10]. Berinmo and Himba each have
five basic color terms, in contrast with eleven in English. The Berinmo and Himba color category systems are
similar to each other in broad outline, but nonetheless differ noticeably. Following these two previous studies, we
considered the following pairs of categories in these three languages:
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Fig 6. Color naming across languages, Study 2. The English categories green and blue (top panel), the
Berinmo categories wor and nol (middle panel), and the Himba categories dumbu and burou (bottom panel),
plotted against a spectrum of hues that ranges from dark yellow at the left, through green, to blue at the right.
Colored squares mark prototypes: the shared prototype for Berinmo wor and Himba dumbu, and the prototypes for
English green and blue; the color of each square approximates the color of the corresponding prototype. For each
language, the dotted-and-dashed vertical lines denote the prototypes for the two categories from that language,
and the dashed vertical line denotes the empirical boundary between these two categories. Black curves show the
probability of assigning a given hue to each of the two native-language categories, according to the category
component of a 2-category model fit to each language’s naming data. The shaded regions mark the ranges of
colors probed in discrimination tasks; these two regions are centered at the English green-blue boundary and the
Berinmo wor-nol boundary. Data are from Roberson et al. (2000) [9] and Roberson et al. (2005) [10].

1. the English categories green and blue,

2. the Berinmo categories wor (covering roughly yellow, orange, and brown), and nol (covering roughly green,
blue, and purple), and

3. the Himba categories dumbu (covering roughly yellow and beige) and burou (covering roughly green, blue,
and purple).

These three pairs of categories are illustrated in Fig 6, using naming data from Roberson et al. (2000) [9] and
Roberson et al. (2005) [10]. It can be seen that the English green-blue distinction is quite different from the
Berinmo wor-nol and the Himba dumbu-burou distinctions, which are similar but not identical to each other. The
shaded regions in this figure indicate specific colors that were probed in discrimination tasks. The shaded (probed)
region that straddles a category boundary in Berinmo and Himba falls entirely within the English category green,
and the shaded (probed) region that straddles a category boundary in English falls entirely within the Berinmo
category nol and the Himba category burou, according to naming data in Figure 1 of Roberson et al. (2005) [10].
The empirical discrimination data in Fig 7 are based on those probed colors [9, 10], and show that in general,
speakers of a language tend to exhibit greater discrimination for pairs of colors that cross a category boundary in
their native language, consistent with the Sapir-Whorf hypothesis.

We sought to determine whether the 2-category model explored above could account for these data. To that end,
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Fig 7. Color discrimination across languages, Study 2. Top panels: Discrimination from memory by Berinmo
and English speakers for pairs of colors across and within English and Berinmo color category boundaries.
Empirical data are from Table 11 of Roberson et al. (2000:392). Empirical values show mean proportion correct
2AFC memory judgments, and error bars show standard error. Model values show mean model proportion correct
2AFC memory judgments after simulated reconstruction with native-language categories. Model results are
range-matched to the corresponding empirical values, such that the minimum and maximum model values match
the minimum and maximum mean values in the corresponding empirical dataset, and other model values are
linearly interpolated. Bottom panels: Discrimination from memory by Himba and English speakers for pairs of
colors across and within English and Himba color category boundaries, compared with model results based on
native-language categories. Empirical data are from Table 6 of Roberson et al. (2005:400); no error bars are
shown because standard error was not reported in that table.

for each language, we created a version of the 2-category model based on the naming data for that language. Thus,
we created an English model in which the two categories were based on empirical naming data for green and blue,
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Table 2. Model fits to cross-language discrimination data, Study 2, reported in mean squared error (lower is
better). The best value in each row is shown in bold. Data are fit better by native-language models than by
other-language models.

Berinmo-English comparison
Berinmo model English model

Berinmo discrimination data 0.0017 0.0080
English discrimination data 0.0019 0.0006

Himba-English comparison
Himba model English model

Himba discrimination data 0.0022 0.0039
English discrimination data 0.0029 0.0008

a Berinmo model in which the two categories were based on empirical naming data for wor and nol, and a Himba
model in which the two categories were based on empirical naming data for dumbu and burou. The black curves in
Fig 6 show the probability of assigning a given hue to each of the two native-language categories, according to the
category component of a 2-category model fit to each language’s naming data. Given this category information,
we simulated color reconstruction from memory for the specific colors considered in the empirical studies [9, 10]
(the colors in the shaded regions in Fig 6). We did so separately for the cases of English, Berinmo, and Himba,
in each case fitting a model based on naming data for a given language to discrimination data from speakers
of that language. As in Study 1, we fit the model parameter corresponding to the uncertainty of fine-grained
perceptual representation to the empirical non-linguistic (here discrimination) data, and we used a single value
for this parameter across all three language models. The model results are shown in Fig 7, beside the empirical
data to which they were fit. The models provide a reasonable match to the observed cross-language differences
in discrimination. Specifically, the stimulus pairs for which empirical performance is best are those that cross a
native-language boundary—and these are stimulus pairs for which the corresponding model response is strongest.

Although not shown in the figure, we also conducted a followup analysis to test whether the quality of these fits
was attributable merely to model flexibility, or to a genuine fit between a language’s category system and patterns
of discrimination from speakers of that language. We did this by switching which language’s model was fit to
which language’s discrimination data. Specifically, we fit the model based on Berinmo naming to the discrimination
data from English speakers (and vice versa), and fit the model based on Himba naming to the discrimination data
from English speakers (and vice versa), again adjusting the model parameter corresponding to the uncertainty of
the fine-grained perceptual representation to the empirical discrimination data. The results are summarized in
Table 2. It can be seen that the discrimination data are fit better by native-language models (that is, models
with a category component originally fit to that language’s naming data) than by other-language models (that is,
models with a category component originally fit to another language’s naming data). These results suggest that
cross-language differences in discrimination may result from category-induced reconstruction bias under uncertainty,
guided by native-language categories.

Study 3: Within-category effects

Although many studies of categorical perception focus on pairs of stimuli that cross category boundaries, there is
also evidence for category effects within categories. In a 2AFC study of categorical perception of facial expressions,
Roberson and colleagues [32] found the behavioral signature of categorical perception (or more precisely in this case,
categorical memory): superior discrimination for cross-category than for within-category pairs of stimuli. But in
addition, they found an interesting category effect on within-category pairs, dependent on order of presentation. For
each within-category pair they considered, one stimulus of the pair was always closer to the category prototype (the
“good exemplar”) than the other (the “poor exemplar”). They found that 2AFC performance on within-category
pairs was better when the target was the good exemplar (and the distractor was therefore the poor exemplar)
than when the target was the poor exemplar (and the distractor was therefore the good exemplar)—even though
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Fig 8. Within-category bias, dependent on presentation order. The category adjustment model predicts:
(top panel, good exemplar) easy within-category discrimination in a 2AFC task when the initially-presented target
t is closer to the prototype than the distractor d is; (bottom panel, poor exemplar) difficult within-category
discrimination with the same two stimuli when the initially-presented target t is farther from the prototype than
the distractor d is. Category is shown as a distribution in blue; stimuli are shown as vertical black lines marked t
and d; reconstruction bias patterns are shown as arrows.

the same stimuli were involved in the two cases. Moreover, performance in the former (good exemplar) case
did not differ significantly from cross-category performance. Hanley and Roberson [36] subsequently reanalyzed
data from a number of earlier studies that had used 2AFC tasks to explore cross-language differences in color
naming and cognition, including those reviewed and modeled in the previous section. Across studies and across
domains, including color, they found the same asymmetrical within-category effect originally documented for facial
expressions.

This within-category pattern may be naturally explained in category-adjustment terms, as shown in Fig 8, and as
argued by Roberson and colleagues [32]. The central idea is that because the target is held in memory, it is subject
to bias toward the prototype in memory, making discrimination of target from distractor either easier or harder
depending on which of the two stimuli is the target. Although this connection with the category adjustment model
has been made in the literature in general conceptual terms [32], followup studies have been theoretically focused
elsewhere [31, 36], and the idea has not to our knowledge been tested computationally using the specific stimuli
and naming patterns involved in the empirical studies. We sought to do so.

The empirical data in Fig 9 illustrate the within-category effect with published results on color discrimination
by speakers of English, Berinmo, and Himba. In attempting to account for these data, we considered again the
English, Berinmo, and Himba variants of the 2-category model first used in Study 2, and also retained from that
study the parameter value corresponding to the uncertainty of the fine-grained perceptual representation, in the
case of native-language models. We simulated reconstruction from memory of the specific colors examined in
Study 2. Following the empirical analyses, this time we disaggregated the within-category stimulus pairs into those
in which the target was a good exemplar of the category (i.e. the target was closer to the prototype than the
distractor was), vs. those in which the target was a poor exemplar of the category (i.e. the target was farther
from the prototype than the distractor was). The model results are shown in Fig 9, and match the empirical data
reasonably well, supporting the informal in-principle argument of Fig 8 with a more detailed quantitative analysis.
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Fig 9. Within-category color discrimination across languages, Study 3. Across: stimulus pair crosses the
native-language boundary; GE: within-category pair, target is the good exemplar; PE: within-category pair, target
is the poor exemplar. Empirical data are from Figures 2 (English: 10-second retention interval), 3 (Berinmo), and
4 (Himba) of Hanley and Roberson [36]. Empirical values show mean proportion correct 2AFC memory judgments,
and error bars show standard error. Model values show mean model proportion correct 2AFC memory judgments
after simulated reconstruction using native-language categories, range-matched as in Fig 7. English model
compared with English data: 0.00002 MSE; Berinmo model compared with Berinmo data: 0.00055 MSE; Himba
model compared with Himba data: 0.00087 MSE.

Conclusions

We have argued that the debate over the Sapir-Whorf hypothesis may be clarified by viewing that hypothesis in
terms of probabilistic inference. To that end, we have presented a probabilistic model of color memory, building
on proposals in the literature. The model assumes both a universal color space and language-specific categorical
partitionings of that space, and infers the originally perceived color from these two sources of evidence. The
structure of this model maps naturally onto a prominent proposal in the literature that has to our knowledge not
previously been formalized in these terms. In a classic early study of the effect of language on color cognition, Kay
and Kempton [7] interpret Whorf [2] as follows:

Whorf [...] suggests that he conceives of experience as having two tiers: one, a kind of rock bottom,
inescapable seeing-things-as-they-are (or at least as human beings cannot help but see them), and a
second, in which [the specific structures of a given language] cause us to classify things in ways that
could be otherwise (and are otherwise for speakers of a different language).

Kay and Kempton argue that color cognition involves an interaction between these two tiers. The existence of
a universal groundwork for color cognition helps to explain why there are constraints on color naming systems
across languages [3–5, 37]. At the same time, Kay and Kempton acknowledge a role for the language-specific tier
in cognition, such that “there do appear to be incursions of linguistic categorization into apparently nonlinguistic
processes of thinking” (p. 77). These two tiers map naturally onto the universal and language-specific components
of the model we have explored here. This structure offers a straightforward way to think about effects of language
on cognition while retaining the idea of a universal foundation underpinning human perception and cognition. Thus,
this general approach, and our model as an instance of it, offer a possible resolution of one source of controversy
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Fig 10. Model. The perception of stimulus S = s produces a fine-grained memory M , and a categorical code c
specifying the category in which s fell. We wish to reconstruct the original stimulus S = s, given M and c.

surrounding the Sapir-Whorf hypothesis: taking that hypothesis seriously need not entail a wholesale rejection of
important universal components of human cognition.

The approach proposed here also has the potential to resolve another source of controversy surrounding the Sapir-
Whorf hypothesis: that some findings taken to support it do not replicate reliably (e.g. in the case of color: [15–17]).
Framing the issue in terms of probabilistic inference touches this question by highlighting the theoretically central
role of uncertainty, as in models of probabilistic cue integration [24]. We have seen stronger category-induced bias
in color memory under conditions of greater delay and presumably therefore greater uncertainty (Study 1, and [20]).
This suggests that in the inverse case of high certainty about the stimulus, any category effect could in principle
be so small as to be empirically undetectable, a possibility that can be pursued by systematically manipulating
uncertainty. Thus, the account advanced here casts the Sapir-Whorf hypothesis in formal terms that suggest
targeted and quantitative followup tests. A related theoretical advantage of uncertainty is that it highlights an
important level of generality: uncertainty could result from memory, as explored here, but it could also result from
noise or ambiguity in perception itself, and on the view advanced here, the result should be the same.

The model we have proposed does not cover all aspects of language effects on color cognition. For example, there
are documented priming effects [31] which do not appear to flow as naturally from this account as do the other
effects we have explored above. However, the model does bring together disparate bodies of data in a simple
framework, and links them to independent principles of probabilistic inference. Future research can usefully probe
the generality and the limitations of the ideas we have explored here.

Materials and Methods

Code and data supporting the analyses reported here are available at
https://github.com/yangxuch/probwhorfcolor.git.

Models

The basic model we consider is shown in Fig 10, which presents in graphical form the generative process behind
Fig 1 above. Our model follows in general outline that of Bae et al. [20], but the formalization of inference within
this structure more closely follows Feldman et al.’s [28] model of category effects in vowel perception. In our
model, the perception of a stimulus S = s produces a fine-grained memory M , and a categorical code c. We
wish to obtain a reconstruction ŝ of the original stimulus S = s, by combining evidence from the two internal
representations M and c that s has produced. That reconstruction is derived as follows:

p(S|M, c) ∝ p(M |S, c)p(S|c) [Bayes’ rule] (1)

∝ p(M |S)p(S|c) [because M is independent of c given S] (2)

Because hue is a circular dimension, the components p(M |S) and p(S|c) could be modeled using circular normal
or von Mises distributions, as was done by Bae et al. [20]. However each of our studies treats only a restricted
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subsection of the full hue circle, and for that reason we instead model these representations using normal
distributions.

p(M |S) represents the fine-grained memory trace M of the original stimulus S = s. We model this as a normal
distribution with mean µm at the location of the original stimulus s, and with uncertainty captured by variance
σ2
m:

p(M |S) = N (M ;µm, σ
2
m) (3)

This is an unbiased representation of the original stimulus s because µm = s.

p(S|c) captures the information about the location of stimulus S that is given by the categorical code c. We again
model this as a normal distribution, this time centered at the prototype µc of category c, with variance σ2

c :

p(S|c) = N (S;µc, σ
2
c ) (4)

This assumes that there is a single categorical code c, and we use this assumption in some of our model variants
below. However in other cases we will capture the fact that more than one category may be applicable to a
stimulus. In such cases we assume that the perceiver knows, for each category c, the applicability π(c) of that
category for the observed stimulus s. We model this as:

π(c) = p(c|s) ∝ p(S = s|c)p(c) (5)

where p(S = s|c) is given by Equation 4 above, and p(c) is assumed to be uniform.

We consider three variants of this basic model, described below in order of increasing complexity: the null model,
the 1-category model, and the 2-category model. For each model, we take the predicted reconstruction ŝ of a
given stimulus S = s to be the expected value of the posterior distribution:

ŝ = E[S|M, c] (6)

Null model

The null model assumes that reconstruction is based only on the fine-grained memory, with no category influence.
This model is derived from Equation 2 by assuming that the memory component p(M |S) is as defined above, and
the category component p(S|c) is uniform, yielding:

p(S|M,−) ∝ N (M ;µm, σ
2
m) (7)

The predicted reconstruction for this model is given by the expected value of this distribution, namely:

E[S|M,−] = µm (8)

where we have assumed µm = s, the originally observed stimulus. This model predicts no category-induced bias:
the reconstruction of the stimulus S = s is simply the value of the stimulus s itself.

1-category model

The 1-category model assumes that reconstruction is based both on fine-grained memory and on information from
a single category, e.g. English green. This model is derived from Equation 2 by assuming that both the memory
component p(M |S) and the category component p(S|c) are as defined above, yielding:

p(S|M, c) ∝ N (M ;µm, σ
2
m) N (S;µc, σ

2
c ) (9)

The predicted reconstruction for this model is given by the expected value of this distribution, namely:

E[S|M, c] =
σ2
c

σ2
c + σ2

m

µm +
σ2
m

σ2
c + σ2

m

µc (10)
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where we have assumed µm = s, the originally observed stimulus. This equation parallels Equation 7 of Feldman et
al. [28]. This model produces a reconstruction that is a weighted average of the original stimulus value s and the
category prototype µc, with weights determined by the relative certainty of each of the two sources of information.
The same weighted average is also central to Ernst and Banks’ [24] study of cue integration from visual and haptic
modalities. That study was based on the same principles we invoke here, and our model—like that of Feldman et
al.—can be viewed as a probabilistic cue integration model in which one of the two cues being integrated is a
category, rather than a cue from a different modality.

2-category model

The 2-category model is similar to the 1-category model, but instead of basing its reconstruction on a single
category c, it bases its reconstruction on two categories c1 and c2 (e.g. English green and blue). It does so by
averaging together the reconstruction provided by the 1-category model for c1 and the reconstruction provided by
the 1-category model for c2, weighted by the applicability π(c) of each category c to the stimulus:

p(S|M) =
∑

c∈{c1,c2}

p(S|M, c)π(c) (11)

Here, p(S|M, c) inside the sum is given by the 1-category model specified in Equation 9, and π(c) is the applicability
of category c to the observed stimulus s as specified above in Equation 5. Our equation here parallels Equation 9
of Feldman et al. [28] who similarly take a weighted average over 1-category models in their model of category
effects in speech perception. The predicted reconstruction for this model is given by the expected value of this
distribution, namely:

E[S|M ] =
∑

c∈{c1,c2}

(
σ2
c

σ2
c + σ2

m

µm +
σ2
m

σ2
c + σ2

m

µc

)
π(c) (12)

assuming as before that µm = s, the original stimulus value. This equation follows Feldman et al. [28] Equation
10.

Fitting models to data

For each model, any category parameters µc and σ2
c are first fit to naming data. The single remaining free

parameter σ2
m, corresponding to the uncertainty of fine-grained memory, is then fit to non-linguistic bias or

discrimination data, with no further adjustment of the category parameters. Although this two-step process is
used in all of our studies, it is conducted in slightly different ways across studies; we supply study-specific details
below in our presentation of each study. All model fits were done using fminsearch in Matlab.

Study 1: Color reconstruction in English speakers

Participants

Twenty subjects participated in the experiment, having been recruited at UC Berkeley. All subjects were at least
18 years of age, native English speakers, and reported normal or corrected-to-normal vision, and no colorblindness.
All subjects received payment or course credit for participation.

Informed consent was obtained verbally; all subjects read an approved consent form and verbally acknowledged their
willingness to participate in the study. Verbal consent was chosen because the primary risk to subjects in this study
was for their names to be associated with their response; this approach allowed us to obtain consent and collect
data without the need to store subjects’ names in any form. Once subjects acknowledged that they understood the
procedures and agreed to participate by stating so to the experimenter, the experimenter recorded their consent by
assigning them a subject number, which was anonymously linked to their data. All study procedures, including
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Munsell hue xyY coordinates Stimulus

1 5Y 0.4426, 0.4588, 30.05

2 7.5Y 0.4321, 0.4719, 30.05

3 10Y 0.4201, 0.4812, 30.05

4 2.5GY 0.4006, 0.4885, 30.05

5 5GY 0.3772, 0.4880, 30.05

6 7.5GY 0.3418, 0.4768, 30.05

7 10GY 0.3116, 0.4563, 30.05

8 2.5G 0.2799, 0.4239, 30.05

9 5G 0.2612, 0.3990, 30.05

10 7.5G 0.2510, 0.3829, 30.05

11 10G 0.2420, 0.3679, 30.05

12 2.5BG 0.2332, 0.3522, 30.05

13 5BG 0.2236, 0.3311, 30.05

14 7.5BG 0.2171, 0.3138, 30.05

15 10BG 0.2116, 0.2950, 30.05

16 2.5B 0.2080, 0.2789, 30.05

17 5B 0.2088, 0.2635, 30.05

18 7.5B 0.2132, 0.2537, 30.05

19 10B 0.2189, 0.2468, 30.05

20 2.5PB 0.2274, 0.2406, 30.05

21 5PB 0.2360, 0.2365, 30.05

22 7.5PB 0.2505, 0.2347, 30.05

23 10PB 0.2637, 0.2352, 30.05

24 2.5P 0.2770, 0.2372, 30.05

25 5P 0.2905, 0.2421, 30.05

26 7.5P 0.3099, 0.2502, 30.05

27 10P 0.3259, 0.2584, 30.05

Table 3. Stimulus coordinates, and approximate rendering of stimuli. All stimuli were presented at lightness 6,
saturation 8 in Munsell space.

those involving consent, were overseen and approved by the UC Berkeley Committee for the Protection of Human
Subjects.

Stimuli

Stimuli were selected by varying a set of hues centered around the blue-green boundary, holding saturation and
lightness constant. Stimuli were defined in Munsell coordinate space, which is widely used in the literature we
engage here (e.g. [9, 10]). All stimuli were at lightness 6 and saturation 8. Hue varied from 5Y to 10P, in equal
hue steps of 2.5. Colors were converted to xyY coordinate space following Table I(6.6.1) of Wyszecki and Stiles
(1982) [38]. The colors were implemented in Matlab in xyY; the correspondence of these coordinate systems in
the stimulus set, as well as approximate visualizations of the stimuli, are reported in Table 3.

We considered three progressively narrower ranges of these stimuli for different aspects of our analyses, in an
attempt to focus the analyses on a region that is well-centered relative to the English color categories green and
blue. We refer to these three progressively narrower ranges as the full range, the medium range, and the focused
range. We specify these ranges below, together with the aspects of the analysis for which each was used.

� Full range: We collected naming data for green and blue relative to the full range, stimuli 1-27, for a total
of 27 stimuli. We fit the category components of our models to naming data over this full range.

� Medium range: We collected bias data for a subset of the full range, namely the medium range, stimuli 5-23,
for a total of 19 stimuli. We considered this subset because we were interested in bias induced by the English
color terms green and blue, and we had the impression, prior to collecting naming or bias data, that colors
outside this medium range had some substantial element of the neighboring categories yellow and purple.

17



� Focused range: Once we had naming data, we narrowed the range further based on those data, to the
focused range, stimuli 5-19, for a total of 15 stimuli. The focused range extends between the (now empirically
assessed) prototypes for green and blue, and also includes three of our stimulus hues on either side of these
prototypes, yielding a range well-centered relative to those prototypes, as can be seen in the bottom panel of
Fig 4 above. We considered this range in our statistical analyses, and in our modeling of bias patterns.

Experimental procedure

The experiment consisted of four blocks. The first two blocks were reconstruction (bias) tasks: one simultaneous
block and one delay block. In the simultaneous block (Fig 3A), the subject was shown a stimulus color as a colored
square (labeled as “Original” in the figure), and was asked to recreate that color in a second colored square (labeled
as “Target” in the figure) as accurately as possible by selecting a hue from a color wheel. The (“Original”) stimulus
color remained on screen while the subject selected a response from the color wheel; navigation of the color wheel
would change the color of the response (“Target”) square. The stimulus square and response square each covered
4.5 degrees of visual angle, and the color wheel covered 11.1 degrees of visual angle. Target colors were drawn
from the medium range of stimuli (stimuli 5 - 23 of Table 3). The color wheel was constructed based on the full
range of stimuli (stimuli 1 - 27 of Table 3), supplemented by interpolating 25 points evenly in xyY coordinates
between each neighboring pair of the 27 stimuli of the full range, to create a finely discretized continuum from
yellow to purple, with 677 possible responses. Each of the 19 target colors of the medium range was presented five
times per block in random order, for a total of 95 trials per block. The delay block (Fig 3B) was similar to the
simultaneous block but with the difference that the stimulus color was shown for 500 milliseconds then disappeared,
then a fixation cross was shown for 1000 milliseconds, after which the subject was asked to reconstruct the target
color from memory, again using the color wheel to change the color of the response square. The one colored square
shown in the final frame of Fig 3B is the response square that changed color under participant control. The order
of the simultaneous block and delay block were counterbalanced by subject. Trials were presented with a 500
millisecond inter-trial interval.

Several steps were taken to ensure that responses made on the color wheel during the reconstruction blocks were
not influenced by bias towards a particular spatial position. The position of the color wheel was randomly rotated
up to 180 degrees from trial to trial. The starting position of the cursor was likewise randomly generated for each
new trial. Finally, the extent of the spectrum was jittered one or two stimuli (2.5 or 5 hue steps) from trial to
trial, which had the effect of shifting the spectrum slightly in the yellow or the purple direction from trial to trial.
This was done to ensure that the blue-green boundary would not fall at a consistent distance from the spectrum
endpoints on each trial.

The second two blocks were naming tasks. In each, subjects were shown each of the 27 stimuli of the full range
five times in random order, for a total of 135 trials per block. On each trial, subjects were asked to rate how good
an example of a given color name each stimulus was. In one block, the color name was green, in the other, the
color name was blue; order of blocks was counterbalanced by subject. To respond, subjects positioned a slider
bar with endpoints “Not at all [green/blue]” and “Perfectly [green/blue]” to the desired position matching their
judgment of each stimulus, as shown above in Fig 3C. Responses in the naming blocks were self-paced. Naming
blocks always followed reconstruction blocks, to ensure that repeated exposure to the color terms green and blue
did not bias responses during reconstruction.

The experiment was presented in Matlab version 7.11.0 (R2010b) using Psychtoolbox (version 3) [39–41]. The
experiment was conducted in a dark, sound-attenuated booth on an LCD monitor that supported 24-bit color.
The monitor had been characterized using a Minolta CS100 colorimeter. A chin rest was used to ensure that each
subject viewed the screen from a constant position; when in position, the base of the subject’s chin was situated
30 cm from the screen.

As part of debriefing after testing was complete, each subject was asked to report any strategies they used
during the delay block to help them remember the target color. Summaries of each response, as reported by the
experimenter, are listed in Table 4.
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Subject Debriefing: strategy during delay block

1 Used two-color words (e.g. ‘blue-green’) to help remember target.

2 Said the name of the color (e.g. ‘periwinkle’, ‘yellow-green’) during some delays.

3 Visualized color during delays.

4 Used verbal cues.

5 Used verbal cues (‘blueish’, ‘green’, etc.).

6 Used labels (e.g. ‘forest green’), but reported feeling that it did not help much.

7 Tried to relate each target to something in nature (e.g. ‘grass green’).

8 Tried to use words (e.g. ‘seafoam’, ‘forest green’, ‘mauve’, etc.).

9 For first 10 trials, used the labels ‘teal’, ‘grass green’, and ‘purple’ as bases, and modified
to the specific target (e.g. ‘greener teal’). Subject reported finding this initial system too
difficult, and just tried to picture the color in subsequent trials.

10 Associated each target with word (e.g. ‘violet’, ‘olive green’, ‘forest green’).

11 Mentally pictured target color.

12 Named color (e.g. ‘teal’, ‘turquoise’) and what “scheme” (e.g. ‘orange’) it was. Sometimes
used a comparison to the previous trial (“a little more orange than previous target”, etc.).

13 Named general color (e.g. ‘blue’, ‘green’), and then pictured what shade it was.

14 Subject reported using no strategy other than mentally visualizing the color.

15 Subject reported visualizing the color and taking a mental snapshot of it.

16 Picked color that was closest to what was seen and graded degree to which it was similar (e.g.
‘lighter’, ‘darker’).

17 Mentally described target color (e.g. ‘sky blue’, ‘olive green’).

18 Used verbal descriptors for color (e.g. ‘aquamarine’, ‘olive green’).

19 Named color and gave mental description (e.g. ‘teal’).

20 No specific strategy reported.

Table 4. Debriefing responses by subject, paraphrased as they were reported to the experimenter. When subjects
gave specific examples of color terms used as memory aids, they are reported here.

Color spectrum

We wished to consider our stimuli along a 1-dimensional spectrum such that distance between two colors on that
spectrum approximates the perceptual difference between those colors. To this end, we first converted our stimuli
to CIELAB color space. CIELAB is a 3-dimensional color space designed “in an attempt to provide coordinates for
colored stimuli so that the distance between the coordinates of any two stimuli is predictive of the perceived color
difference between them” (p. 202 of [42]). The conversion to CIELAB was done according to the equations on pp.
167-168 of Wyszecki and Stiles (1982) [38], assuming 2 degree observer and D65 illuminant. For each pair of
neighboring colors in the set of 677 colors of our color wheel, we measured the distance (∆E) betwen these two
colors in CIELAB space. We then arranged all colors along a 1-dimensional spectrum that was scaled to length
1, such that the distance between each pair of neighboring colors along that spectrum was proportional to the
CIELAB ∆E distance between them. This CIELAB-based 1-dimensional spectrum was used for our analyses in
Study 1, and an analogous spectrum for a different set of colors was used for our analyses in Studies 2 and 3.

Statistical analysis

As a result of the experiment detailed above, we obtained bias data from 20 participants, for each of 19 hues
(the medium range), for 5 trials per hue per participant, in each of the simultaneous and delayed conditions.
For analysis purposes, we restricted attention to the focused range of stimuli (15 hues), in order to consider a
region of the spectrum that is well-centered with respect to green and blue, as we are primarily interested in
bias that may be induced by these two categories. We wished to determine whether the magnitude of the bias
differed as a function of the simultaneous vs. delayed condition, whether the magnitude of the bias varied as a
function of hue, and whether there was an interaction between these two factors. To answer those questions, we
conducted a 2 (condition: simultaneous vs. delayed) × 15 (hues) repeated measures analysis of variance (ANOVA),
in which the dependent measure was the absolute value of the reproduction bias (reproduced hue minus target
hue), averaged across trials for a given participant at a given target hue in a given condition. The ANOVA included
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an error term to account for across-subject variability. We found a main effect of condition, with greater bias
magnitude in the delayed than in the simultaneous condition [F (1, 19) = 61.61, p < 0.0001], a main effect of hue
[F (14, 266) = 4.565, p < 0.0001], and an interaction of hue and condition [F (14, 266) = 3.763, p < 0.0001]. All
hue calculations were relative to the CIELAB-based spectrum detailed in the preceding section.

We then conducted paired t-tests at each of the target hues, comparing each participant’s bias magnitude for that
hue (averaged over trials) in the simultaneous condition vs. the delayed condition. Blue asterisks at the top of
Fig 4 mark hues for which the paired t-test returned p < 0.05 when applying Bonferroni corrections for multiple
comparisons.

Modeling procedure

We considered four models in accounting for color reconstruction in English speakers: the null model, a 1-category
model for which the category was green, a 1-category model for which the category was blue, and a 2-category
model based on both green and blue.

We fit these models to the data in two steps. We first fit any category parameters (the means µc and variances σ2
c

for any categories c) to the naming data. We then fit the one remaining free parameter (σ2
m), which captures

the uncertainty of fine-grained memory, to the bias data, without further adjusting the category parameters. We
specify each of these two steps below.

We fit a Gaussian function to the goodness naming data for green, and another Gaussian function to the data for
blue, using maximum likelihood estimation. The fitted Gaussian functions can be seen, together with the data to
which they were fit, in the top panel of Fig 4. This process determined values for the category means µc and
category variances σ2

c for the two categories green and blue.

For each of the four variants of the category adjustment model outlined above (null, 1-category green, 1-category
blue, and 2-category), we retained the category parameter settings resulting from the above fit to the naming
data. We then obtained a value for the one remaining free parameter σ2

m, corresponding to the uncertainty of
fine-grained memory, by fitting the model to the bias data via maximum likelihood estimation, without further
adjusting the category parameters.

Study 2: Color discrimination across languages

Empirical data

The empirical data considered for this study were drawn from two sources: the study of 2AFC color discrimination
by speakers of Berinmo and English in Experiment 6a of Roberson et al. (2000) [9], and the study of 2AFC color
discrimination by speakers of Himba and English in Experiment 3b of Roberson et al. (2005) [10]. In both studies,
two sets of color stimuli were considered, all at value (lightness) level 5, and chroma (saturation) level 8. Both sets
varied in hue by increments of 2.5 Munsell hue steps. The first set of stimuli was centered at the English green-blue
boundary (hue 7.5BG), and contained the following seven hues: 10G, 2.5BG, 5BG, 7.5BG, 10BG, 2.5B, 5B. The
second set of stimuli was centered at the Berinmo wor-nol boundary (hue 5GY), and contained the following seven
hues: 7.5Y, 10Y, 2.5GY, 5GY, 7.5GY, 10GY, 2.5G. Stimuli in the set that crossed an English category boundary all
fell within a single category in Berinmo (nol) and in Himba (burou), and stimuli in the set that crossed a Berinmo
category boundary also crossed a Himba category boundary (dumbu-burou) but all fell within a single category in
English (green), according to naming data in Figure 1 of Roberson et al. (2005) [10]. Based on specifications in
the original empirical studies [9, 10], we took the pairs of stimuli probed to be those presented in Table 5. Based
on naming data in Figure 1 of Roberson et al. 2005 [10], we took the prototypes of the relevant color terms to be:

English green prototype = 10GY
English blue prototype = 10B
Berinmo wor prototype = 5Y
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Table 5. Hues for probed stimulus pairs within and across the English blue-green, Berinmo wor-nol, and Himba
dumbu-burou boundaries. Any stimulus pair that includes a boundary color is considered to be a cross-category
pair. All hues are at value (lightness) level 5, and chroma (saturation) level 8. 1s denotes a 1-step pair; 2s denotes
a 2-step pair.

English blue-green stimuli (boundary color = 7.5BG)
within across

5B-2.5B (1s) 7.5BG-5BG (1s)
5B-10BG (2s) 2.5B-7.5BG (2s)

5BG-2.5BG (1s) 10BG-7.5BG (1s)
5BG-10G (2s) 10BG-5BG (2s)

Berinmo wor-nol stimuli (boundary color = 5GY)
within across

7.5Y-10Y (1s) 5GY-7.5GY (1s)
7.5Y-2.5GY (2s) 10Y-5GY (2s)
7.5GY-10GY (1s) 2.5GY-5GY (1s)
7.5GY-2.5G (2s) 2.5GY-7.5GY (2s)

Himba dumbu-burou stimuli (boundary color = 7.5GY)
within across

7.5Y-10Y (1s) 5GY-7.5GY (1s)
7.5Y-2.5GY (2s) 2.5GY-7.5GY (2s)
2.5GY-5GY (1s) 7.5GY-10GY (1s)
10Y-5GY (2s) 7.5GY-2.5G (2s)

Berinmo nol prototype = 5G
Himba dumbu prototype = 5Y
Himba burou prototype = 10G

Fig 6 above shows a spectrum of hues ranging from the Berinmo wor prototype (5Y) to the English blue prototype
(10B) in increments of 2.5 Munsell hue steps, categorized according to each of the three languages we consider
here. These Munsell hues were converted to xyY and then to CIELAB as above, and the positions of the hues on
the spectrum were adjusted so that the distance between each two neighboring hues in the spectrum is proportional
to the CIELAB ∆E distance between them. We use this CIELAB-based spectrum for our analyses below. The two
shaded regions on each spectrum in Fig 6 denote the two target sets of stimuli identified above.

The discrimination data we modeled were drawn from Table 11 of Roberson et al. (2000:392) [9] and Table 6 of
Roberson et al. (2005:400) [10].

Modeling procedure

We considered three variants of the 2-category model: an English blue-green model, a Berinmo wor-nol model,
and a Himba dumbu-burou model. As in Study 1, we fit each model to the data in two steps. For each language’s
model, we first fit the category component of that model to naming data from that language. Because color
naming differs across these languages, this resulted in three models with different category components. For each
model, we then retained and fixed the resulting category parameter settings, and fit the single remaining parameter,
corresponding to memory uncertainty, to discrimination data. We detail these two steps below.

For the naming data, we modeled the probability of applying category name c to stimulus i as:

p(c|i) ∝ p(i|c)p(c) ∝ f(i|c)p(c) (13)

where p(c) is assumed to be uniform, and f(i|c) is a non-normalized Gaussian function corresponding to category
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c, with mean µc and variance σ2
c . There were two categories c for each model, e.g. wor and nol in the case of

the Berinmo model. Category means µc were set to the corresponding category prototypes shown above (e.g. µc

for Berinmo nol corresponded to 5G), and category variances σ2
c were left as free parameters. We then adjusted

these free category variances to reproduce the empirical boundary between the two categories c1 and c2 for that
language, as follows. Sweeping from left (c1) to right (c2), we took the model’s boundary between c1 and c2 to
be the first position i on the spectrum for which p(c1|i) ≤ p(c2|i); we refer to this as the model crossover point.
We measured the distance in the CIELAB-based spectrum between the model crossover point and the empirical
category boundary, and adjusted the category variances σ2

c1 and σ2
c2 so as to minimize that distance. This was

done separately for each language’s model. Fig 6 shows the resulting fits of category components to naming data
for each of the three languages.

We then simulated performance in the 2AFC discrimination task for each stimulus pair in Table 5, by each model,
as follows. Given a pair of stimuli, one stimulus was taken to be the target t and therefore held in memory, and
the other taken to be the distractor d. We took the reconstruction r for the target stimulus t to be the expected
value of the posterior for the 2-category model:

r = E[t|M ] (14)

We then measured, along the hue spectrum in question, the distance dist(r, t) between the reconstruction r and
the target t, and the distance dist(r, d) between the reconstruction r and the distractor d. We converted each of
these two distances to a similarity score:

sim(i, j) = exp(−dist(i, j)) (15)

and modeled the proportion correct choice as:

p =
sim(r, t)∑

i∈{t,d} sim(r, i)
(16)

These equations are based on Luce’s [43] (pp. 113-114) model of choice behavior. For each pair of stimuli, each
stimulus was once taken to be the target, and once taken to be the distractor, and the results averaged to yield a
mean discrimination score for that pair. Scores were then averaged across all pairs listed as within-category pairs,
and separately for all pairs listed as cross-category pairs. These scores were range-matched to the empirical data,
in an attempt to correct for other factors that could affect performance, such as familiarity with such tasks, etc.;
such external factors could in principle differ substantially across participant pools for the three languages modeled.
We measured MSE between the model output and the data so treated, and adjusted the remaining parameter σ2

m,
corresponding to memory uncertainty, so as to minimize this MSE. This entire process was conducted two times.
The first time, each language’s model was fit to that same language’s discrimination data. Then, to test whether
native-language categories allow a better fit than the categories of another language, we fit the Berinmo model to
the English discrimination data (and vice versa), and the Himba model to the English discrimination data (and
vice versa).

Study 3: Within-category effects

Empirical data

The empirical data considered for this study are those of Figures 2 (English green/blue, 10 second delay), 3
(Berinmo wor/nol), and 4 (Himba dumbu/borou) of Hanley and Roberson (2011) [36]. These data were originally
published by Roberson and Davidoff (2000) [8], Roberson et al. (2000) [9], and Roberson et al. (2005) [10],
respectively. The Berinmo and Himba stimuli and data were the same as in our Study 2, but the English stimuli
and data reanalyzed by Hanley and Roberson (2011) [36] Figure 2 were instead drawn from Table 1 of Roberson
and Davidoff (2000) [8], reproduced here in Table 6, and used for the English condition of this study. These stimuli
for English were at lightness (value) level 4, rather than 5 as for the other two languages. We chose to ignore this
difference for modeling purposes.
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Table 6. Hues for probed stimulus pairs within and across the English green-blue boundary for Study 3, from
Table 1 of Roberson and Davidoff (2000). Any stimulus pair that includes a boundary color is considered to be a
cross-category pair. All hues are at value (lightness) level 4, and chroma (saturation) level 8. 1s denotes a 1-step
pair; 2s denotes a 2-step pair.

English green-blue stimuli (boundary color = 7.5BG)
within across

5B-2.5B (1s) 10BG-7.5BG (1s)
5B-10BG (2s) 2.5B-7.5BG (2s)

2.5BG-10G (1s) 7.5BG-5BG (1s)
5BG-10G (2s) 10BG-5BG (2s)

Modeling procedure

All modeling procedures were identical to those of Study 2, with the exception that GE (target = good exemplar)
and PE (target = poor exemplar) cases were disaggregated, and analyzed separately.
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