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Abstract

It has been argued that semantic systems reflect pressure for
efficiency, and a current debate concerns the cultural evolu-
tionary process that produces this pattern. We consider effi-
ciency as instantiated in the Information Bottleneck (IB) prin-
ciple, and a model of cultural evolution that combines iterated
learning and communication. We show that this model, instan-
tiated in neural networks, converges to color naming systems
that are efficient in the IB sense and similar to human color
naming systems. We also show that iterated learning alone,
and communication alone, do not yield the same outcome as
clearly.

Keywords: efficient communication; iterated learning; cul-
tural evolution; semantic categories; color naming

Introduction

Semantic categories vary across languages, and it has been
proposed that this variation can be explained by functional
pressure for efficiency. On this view, systems of categories
are under pressure to be both simple and informative (e.g.
Rosch, 1978), and different languages arrive at different ways
of solving this problem, yielding wide yet constrained cross-
language variation. There is evidence for this view from se-
mantic domains such as kinship (Kemp & Regier, 2012), con-
tainer names (Y. Xu et al., 2016), names for seasons (Kemp
et al.,, 2019), and numeral systems (Y. Xu et al., 2020).
Zaslavsky et al. (2018) gave this proposal a firm theoretical
foundation by grounding it in an independent information-
theoretic principle of efficiency, the Information Bottleneck
(IB) principle (Tishby et al., 1999); they also showed that
color naming systems across languages are efficient in the
IB sense, that optimally IB-efficient systems resemble those
found in human languages, and that the IB principle accounts
for important aspects of the data that had eluded earlier expla-
nations. Subsequent work has shown that container naming
(Zaslavsky et al., 2019), grammatical categories of number,
tense, and evidentiality (Mollica et al., 2021), and person sys-
tems (Zaslavsky et al., 2021) are also efficient in the IB sense.

In a commentary on this line of research, Levinson (2012)
asked how semantic systems evolve to become efficient, and
suggested that an important role may be played by iterated
learning (IL; e.g. Scott-Phillips & Kirby, 2010). In IL, a
cultural convention is learned by one generation of agents,
who then provide training data from which the next genera-
tion learns, and so on. The convention changes as it passes
through generations, yielding a cultural evolutionary process.

The idea that such a process could eventually lead to efficient
semantic systems has since been explored and broadly sup-
ported. J. Xu et al. (2013) showed that chains of human learn-
ers who were originally given a randomly generated color cat-
egory system eventually produced systems that were similar
to those of the World Color Survey (WCS; Cook et al., 2005),
a large dataset of color naming systems from 110 unwritten
languages. Although this study did not explicitly address effi-
ciency, Carstensen et al. (2015) drew that link explicitly: they
reanalzyed the data of J. Xu et al. (2013) and showed that the
color naming systems produced by IL not only became more
similar to those of human languages — they also became more
informative; the same paper also presented analogous find-
ings for semantic systems of spatial relations. In response,
Carr et al. (2020) argued, on the basis of a Bayesian model
of IL and experiments with human participants, that learning
actually contributes simplicity rather than informativeness.
Overall, there is support for the idea that IL can lead to effi-
cient semantic systems, with continuing debate over how and
why. There are also recent proposals that non-iterated learn-
ing — e.g. in the context of a dyad of communicating agents
(e.g. Kagebick et al., 2020; Chaabouni et al., 2021; Tucker et
al., 2022), or in a single agent without communication (e.g.
Steinert-Threlkeld & Szymanik, 2020; Gyevnar et al., 2022)
— can explain efficient color naming systems. These recent
contributions build on an important line of earlier work using
agent-based simulations cast as evolutionary models, with-
out explicitly addressing efficiency (e.g. Steels & Belpaeme,
2005; Belpaeme & Bleys, 2005; Dowman, 2007; Jameson &
Komarova, 2009; Baronchelli et al., 2010).

Several of these prior studies have engaged efficiency in
the IB sense, and two are of particular relevance to our own
work. Chaabouni et al. (2021) showed that a dyad of neural
network agents, trained to discriminate colors via communi-
cation, eventually arrived at color naming systems that were
highly efficient in the IB sense. However, these systems did
not always resemble those of human languages: their cate-
gories “depart to some extent from those typically defined
by human color naming” (Chaabouni et al., 2021, p. 11 of
SI). Tucker et al. (2022) explored a similar color communi-
cation game, and found that their neural agents gravitated to
color naming systems that are both essentially optimally ef-
ficient in the IB sense, and similar to human color naming
systems from the WCS. They achieved this by optimizing an



Figure 1: Top: Color naming stimulus grid. Bottom: 9
color naming systems displayed relative to this grid. The left
column contains color naming systems from 3 languages in
the WCS (from top to bottom: Bete, Colorado, Dyimini).
Colored regions indicate category extensions, and the color
code used for each category is the mean of that category in
CIELAB color space. The named color categories are distri-
butions, and for each category we highlight the level sets be-
tween 0.75 — 1.0 (unfaded area) and 0.3 — 0.75 (faded area).
The middle and right columns contain randomly-generated
systems of complexity comparable to that of the WCS sys-
tem in the same row. The middle column shows random sys-
tems that are similar to the WCS system in the same row. The
right column shows random systems that are dissimilar to the
WCS system in the same row; at the same time, there is no
other WCS system that is more similar to this random system.

objective function that is based on the IB objective. To our
knowledge, earlier work leaves open whether both high 1B
efficiency and similarity to human languages can be achieved
by other means. We explore that question here.

In what follows, we first demonstrate that there exist many
possible color naming systems that are highly efficient in
the IB sense, but do not closely resemble human systems.
The existence of such efficient-yet-not-human-like systems
is not surprising given that IB is a non-convex optimization
problem (Tishby et al., 1999; Zaslavsky et al., 2018), but it
may be helpful in understanding how Chaabouni et al. (2021)
achieved high IB efficiency with systems that deviate from
human ones. We then show that IL, instantiated in commu-
nicating neural networks, gravitates toward efficiency and,
within the class of efficient systems, gravitates more toward
human color naming systems than toward others. Finally, we
show that iterated learning alone, and communication alone,
do not yield that outcome as clearly. We conclude that iter-
ated learning and communication jointly provide a plausible
explanation of how human color naming systems become ef-
ficient.

Not all efficient systems are human-like

We considered a class of artificial color naming systems re-
lated to one considered by Zaslavsky et al. (2022). In the
class we consider, each named category w is modeled as a

spherical Gaussian-shaped kernel with mean (prototype) x,,
in 3-dimensional CIELAB color space, such that the distribu-
tion over words w given a color chip c is:

S(w|c) o< oM 13 (1)

where n > 0 is a parameter controlling the precision of the
Gaussian kernel. We then generated artificial color category
systems with K = 3...10 categories each, by first sampling
n randomly from a uniform distribution over the interval
[0.001,0.005] and then sampling the prototype x,, of each
category w randomly, without replacement, from a uniform
distribution over the cells of the color naming grid shown at
the top of Figure 1. In analyzing these systems, we drew
on the following three quantities from the IB framework as
presented by Zaslavsky et al. (2018): the complexity of a cat-
egory system, gNID (a measure of dissimilarity between two
category systems), and € (a measure of inefficiency, or devi-
ation from the theoretical limit of efficiency). We noted that
the range of complexity (in the IB sense) for systems in the
World Color Survey (WCS) was [0.84,2.65], and also noted
that our random model sometimes generated systems outside
this range; we only considered artificial systems with com-
plexity within this range, and generated 100 such systems for
each K; we refer to these systems as RM, for random model.

The lower panels of Figure 1 show that some of these RM
systems are similar to, and others quite dissimilar to, natu-
ral systems in the WCS. In each row, the rightmost system,
which is dissimilar to the WCS system in that row, is nonethe-
less more similar to that WCS system than to any other WCS
system, meaning that it is dissimilar to all WCS systems.
Thus, there exist RM systems that are quite dissimilar to nat-
urally occurring systems. To quantify this pattern, we sep-
arated the RM systems into two groups, based on whether
their gNID to the closest WCS system exceeded a threshold.
We set this threshold to the smallest gNID between systems
in the left (WCS) and right (RM dissimilar) columns of Fig-
ure 1, which is 0.29. We then grouped all RM systems with
gNID to the closest WCS system below this threshold into
one group, RM (for similar to WCS), and the other RM sys-
tems into another group, RMy (for dissimilar to WCS). 38%
of the RM systems fell in RMy and they spanned the com-
plexity range [0.86,2.26]. Thus, a substantial proportion of
the RM systems are at least as dissimilar to WCS systems as
are those in the right column of Figure 1.

Figure 2 shows the results of an IB efficiency analysis of
the WCS systems (replicating Zaslavsky et al., 2018, and as-
suming their least-informative prior), and also of our RM sys-
tems. It can be seen that all RM systems are highly efficient
in the IB sense — i.e. they are close to the IB curve that de-
fines the theoretical limit of efficiency in this domain. Mann-
Whitney U tests revealed (1) that the RM systems tend to ex-
hibit greater efficiency (lower inefficiency €) than do the WCS
systems in the same complexity range (P < .001), and (2)
that the RMy systems, which are dissimilar to WCS systems,
are also more efficient than WCS systems (P < .001, one-
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Figure 2: Efficiency of color naming, following Zaslavsky
et al.,, 2018. The dashed line is the IB theoretical limit of
efficiency for color naming, indicating the greatest possible
accuracy for each level of complexity. The color naming sys-
tems of the WCS are shown in orange, replicating the find-
ings of Zaslavsky et al., 2018. Our RM systems are shown
in blue. It can be seen that the RM systems are often closer
to the IB curve than the WCS systems are. The inset shows
the 9 color systems of Figure 1, with the dissimilar random
systems shown as +.

sided), and slightly to marginally more efficient than RM;
systems (P = .019 one-sided; Bonferroni corrections do not
change the qualitative outcome). These findings suggest that
there is a substantial number of color naming systems that
are dissimilar to those of human languages, yet more efficient
than them. This in turn may help to make sense of Chaabouni
et al.’s (2021) finding that their evolutionary process yielded
systems that were highly efficient but not particularly similar
to human ones: our analysis illustrates that there are many
such systems. Given this, we sought an evolutionary process
that would yield both efficiency in the IB sense, and similar-
ity to human systems, without specifying IB optimization as
a part of that process (cf. Tucker et al., 2022).

Iterated learning and communication

As noted above, iterated learning (IL; e.g. Kirby, 2001; Smith
et al., 2003) is a cultural evolutionary process in which a cul-
tural convention is learned first by one generation of agents,
who then pass that convention on to another generation, and
so on — and the convention changes during inter-generational
transmission. Some of the work we have reviewed above ad-
dresses IL (e.g. Levinson, 2012; Carstensen et al., 2015; Carr
et al., 2020). However other work we have reviewed instead
addresses cultural evolution through communication within
a single generation (e.g. Kéageback et al., 2020; Chaabouni
et al., 2021; Tucker et al., 2022). We wished to explore the
roles of both IL and communication, and so we adopted an
approach that involves both, in a way that allows the role of
each to be highlighted. Specifically, we adopted the recently
proposed neural iterated learning (NIL) algorithm (Ren et
al., 2020). In the NIL algorithm, artificial agents are imple-
mented as neural networks that communicate with each other

within a generation, and cultural convention (in our case, a
color naming system) evolves both from within-generation
communication and from inter-generational transmission, as
the convention is iteratively passed down through generations
of artificial agents, with each new generation learning from
the previous one.!

In the NIL algorithm, each generation ¢ (for time step)
consists of two artificial agents, a speaker S; and a listener
L;. The NIL algorithm operates in three phases. (1) In the
first phase, the learning phase, both agents are exposed to
the naming convention of the previous generation. This is
done by first training the speaker S;, using cross-entropy loss,
on color-name pairs generated by the speaker of the previous
generation. The listener L, is then trained via reinforcement
learning in a few rounds of a signaling game while keeping
S; fixed: that is, the speaker learns from the previous gener-
ation, and the listener then learns from the speaker. We had
the agents play the signaling game used by Kagebick et al.,
2020, in which the speaker is given a color chip ¢, sampled
from a prior distribution over color chips, and produces a cat-
egory name describing that color. The listener then attempts
to identify the speaker’s intended color based on the name
produced, by selecting a color chip ¢ from among those of
the naming grid shown in Figure 1. A reward is given to the
listener depending on how perceptually similar the selected
chip is to the original color. (2) In the second phase, the
interaction phase, the agents play the same signaling game
but this time both agents receive a joint reward and update
their parameters during communicative interactions. (3) In
the third phase, the transmission phase, color-name pairs are
generated by sampling colors from the prior distribution and
obtaining names for them from the speaker S;. These color-
name pairs are then passed on to the next generation of agents.
In all three phases, color chips are sampled according to the
least-informative prior of Zaslavsky et al. (2018). We repre-
sent both the speaker and listener as neural networks with one
hidden layer consisting of 25 units with a sigmoidal activation
function. Individual colors are represented in 3-dimensional
CIELAB space when supplied as input to the speaker, and cat-
egory names as one-hot encoded vectors. For the reinforce-
ment learning parts of NIL we use the classical algorithm RE-
INFORCE (Williams, 1992). For the transmission phase we
sample 300 color-name pairs, out of the 330 chips in the entire
stimulus set; this ensures that the new generation will have
seen examples from most of color space but it is impossible
for them to have seen all color-name pairs. To optimize the
neural networks, we use the optimizer Adam (Kingma & Ba,
2015), both in the learning and interaction phase, with learn-
ing rate 0.005 and batch size 50. For each phase in the NIL
algorithm we take 1000 gradient steps. We stop the NIL al-
gorithm once the maximum difference in IB complexity and
accuracy over the ten latest generations is smaller than 0.1 bit,

INIL, or neural iterated learning, is therefore not an entirely in-
formative name for this process, as it does not explicitly label the
important element of within-generation communication.



Algorithm 1 Neural Iterated Learning

1: Initialize D uniformly at random
2: fort=1...do
3:  Learning Phase
4:  Randomly initialize S; and L.
5 Train S; on D, using stochastic gradient descent and
cross-entropy loss.
6:  Play signaling game between S; and L, and update pa-
rameters of only L, using the rewards.
7. Interaction Phase
8:  Play signaling game between S; and L; and update pa-
rameters of both agents using the rewards.
9:  Transmission Phase
10:  Create transmission dataset D,y consisting of color-
name pairs, (c,w) by sampling colors from the prior
p(c) and providing them as input to S;.
11: end for

i.e. when the last ten generations are all within a small region
of the IB plane. Algorithm 1 presents a schematic overview
of the NIL algorithm, and Ren et al. (2020) present a detailed
description. The hyperparameters were tuned empirically by
studying which parameters yielded the highest reward in a
small set of experiments. We found very little difference be-
tween different sizes of the network.

For each vocabulary size K = 3...10 and K = 100 we
ran 100 independent instances of the NIL algorithm. For
each instance, we considered the color naming system of
the last speaker to be the result of that instance — we call
these systems IL+C, as they are the result of iterated learning
plus communication, and we evaluated the IL+C systems in
the IB framework. As can be seen in Figure 3 (top panel),
the IL+C systems are highly efficient in the IB sense: they
lie near the theoretical efficiency limit (median inefficiency
€ =0.07), and they are no less efficient than the random RM
systems we considered above (median inefficiency € = 0.09),
which in turn are more efficient than the human systems of
the WCS (see above). Thus, iterated learning plus commu-
nication as formalized in the NIL algorithm leads to seman-
tic systems that are efficient in the IB sense. This is not en-
tirely surprising: the reward during the signaling game favors
informativeness (higher reward for similar colors, following
Kagebick et al., 2020), and it has been argued that learning
favors simplicity (e.g. Carr et al., 2020). Interestingly, all the
resulting systems lie within the complexity range of the WCS
systems even though NIL could theoretically produce much
more complex systems, especially when K = 100.

J. Xu et al. (2013) showed that chains of iterated human
learners tended to gravitate toward color naming systems that
were similar to those of the WCS, and we wished to know
whether the same was true of computational agents in the NIL
framework. For each IL+C system, we determined the dis-
similarity (gNID) between that system and the most similar
(lowest gNID) WCS system. We also determined the analo-
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Figure 3: Efficiency of the (top) IL+C, (middle) IL, and (c)
C evolved color naming systems, in each case compared with
the natural systems of the WCS. The black triangle indicates
the end state of one run, shown in the inset color map.

gous quantity (dissimilarity to the most similar WCS system)
for each random RM system. Figure 4 shows that IL+C sys-
tems tend to be similar to WCS systems to a greater extent
than RM systems do, and this was confirmed by a one-sided
Mann-Whitney U test (P < .001). Thus, the NIL process
tends to gravitate toward human (WCS) systems to a greater
extent than a random but efficient baseline, RM.

We also asked whether NIL would transform efficient sys-
tems that were dissimilar to those of the WCS (namely those
of RMy) into comparably efficient systems that were more
similar to the WCS. To test this, we initialized the NIL al-
gorithm with a system sampled from RMg, ran the NIL algo-
rithm, and compared the initial system to the one that resulted
from NIL. Figure 5 illustrates the beginning and end points
of this process for a small set of systems, and shows that NIL
transforms systems that are efficient but unlike the WCS into
systems that are similar to particular WCS systems. Figure 6
shows the same general pattern but aggregated over all RM4
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Figure 5: NIL transforms efficient color naming systems to
become more similar to the WCS. In each row, the left col-
umn shows an RMy system that was used to initialize NIL,
the middle column shows the result of running NIL from that
initialization state, and the right column shows a WCS system
(from top to bottom: Bete, Colorado, Dyimini) that is similar
to the NIL result.

systems. For each NIL chain initialized with an RMq4 system,
we measured the dissimilarity (gNID) of that initialized sys-
tem to the most similar WCS system, and the gNID of the end
result of NIL to its most similar WCS system. It can be seen
that NIL transforms RMgq systems into systems that are more
similar to the human systems of the WCS. The mean gNID to
WCS was 0.38 before NIL and 0.25 after, and the reduction in
dissimilarity to WCS after applying NIL was significant (one-
sided (paired) Wilcoxon signed-rank test, n =302, T = 1113,
P < .001). The median inefficiency of RMy is € = 0.09 and
the median inefficiency of the results of NIL is slightly lower
at € =0.07, meaning that NIL made the already-efficient RMq
systems slightly more efficient (one-sided (paired) Wilcoxon
signed-rank test, n = 302, T = 7716, P < .001). Thus, NIL
moves already-efficient systems closer to the attested systems
of the WCS, while maintaining and even slightly improving
efficiency. Finally, it is noteworthy that NIL with 3 terms con-
verges to a system that is similar to a 3-term WCS system (see
the top row of Figure 5), because 3-term systems are the one
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Figure 6: NIL transforms efficient RMy color naming sys-
tems to become more similar to the WCS. The difference
score is dissimilarity to WCS (minimum gNID to any WCS
system) before NIL, minus the same quantity after NIL. A
higher value indicates that NIL has moved the systems closer
to the WCS. There are no values below 0, meaning that NIL
never caused a system to become less similar to the WCS.

case in which IB optimal systems qualitatively diverge from
human data (Zaslavsky et al., 2018, p. 7941). Thus, this is a
case in which NIL appears to provide a better qualitative fit
to the data than IB does (see also Regier et al., 2007, 2015).

Other possible evolutionary processes

So far, we have seen evidence that the NIL algorithm may
provide a plausible model of the cultural evolutionary pro-
cess by which human color naming systems become efficient.
We have referred to the result of the full NIL algorithm as
IL+C systems, because these systems result from both iter-
ated learning (IL) and communication (C). This raises the
question whether iterating learning alone, or communication
alone, would yield comparable results.

To find out, we ran two variants of the NIL algorithm. One
variant included only iterated learning but no communication
(i.e. lines 6-8 of Algorithm 1 were omitted). The other variant
included communication but no iterated learning (i.e. there
was only one pass through the main loop, which stopped at
line 9); this is exactly the experiment that was performed
by Kégebick et al. (2020). All other aspects of the algo-
rithm were unchanged. We refer to the results of the iterated-
learning-only algorithm as IL (for iterated learning), and the
results of the communication-only algorithm as C (for com-
munication).

Comparison of the three panels of Figure 3 reveals that
there are qualitative differences in the profiles of the sys-
tems produced by the 3 variants of the NIL algorithm (IL+C,
IL, and C). We have already seen that IL+C systems (top
panel) are both efficient and similar to human systems; we
also note that they lie within roughly the same complexity
range as the human systems of the WCS. In contrast, the IL
systems (middle panel) skew toward lower complexity than
is seen in human systems, and in fact about 6% of the IL
systems lie at the degenerate point (0,0) in the IB plane, at
which there is a single category covering the entire color do-



main. This skew toward simplicity is compatible with Carr
et al.’s (2020) claim that iterated learning provides a bias
toward simplicity. At the same time, the IL systems are
not only simple but also quite efficient (i.e. informative for
their level of complexity), which is in turn compatible with
Carstensen et al.’s (2015) claim that iterated learning pro-
vides some bias toward informativeness. Finally, the C sys-
tems (bottom panel) show the opposite pattern: a bias toward
higher informativeness, at the price of higher complexity, ex-
tending well above the complexity range observed in the hu-
man systems of the WCS. Taken together, these results sug-
gest that iterated learning alone over-emphasizes simplicity,
communication alone over-emphasizes informativeness, and
iterated learning with communication provides a balance be-
tween the two that aligns reasonably well with what is ob-
served in human color naming systems. We found that IL+C
systems are slightly more efficient (mean € = 0.07 £ 0.02)
than IL (mean € = 0.15+0.08) or C (mean € =0.11 +0.04)
systems, where the + indicates plus or minus one standard
deviation. IL+C systems were also closer to the most similar
WCS system (mean gNID = 0.21 +0.05) than were IL (mean
gNID = 0.57£0.17) or C (mean gNID = 0.27 +0.07) sys-
tems. Overall, these results suggest that iterated learning plus
communication is a more plausible model of the cultural evo-
lutionary process that leads to efficient human color naming
systems than is either iterated learning alone, or communica-
tion alone, as these ideas are formalized in the NIL algorithm.

Discussion

We have shown (1) that there exists a reasonably sized class of
color naming systems that are highly efficient in the IB sense
but dissimilar from human systems; (2) that iterated learning
plus communication, as captured in the NIL algorithm, leads
to color naming systems that are both efficient in the IB sense
and similar to human systems, and (3) that iterated learning
alone, and communication alone, do not yield that result as
clearly. These findings help to answer some questions, and
also open up others.

As we have noted, the existence of highly efficient systems
that do not align with human ones is not in itself surprising.
IB is a non-convex optimization problem (Tishby et al., 1999;
Zaslavsky et al., 2018), so multiple optima and near-optima
are to be expected. However we feel that our identification
of such systems may nonetheless be helpful, because it high-
lights just how many such systems exist, and just how dissim-
ilar from human systems they sometimes are — which helps
to make sense of Chaabouni et al.’s (2021) finding that simu-
lations of cultural evolution can lead to color naming systems
that exhibit high IB efficiency but deviate to some extent from
human systems. This in turn highlights the importance of
identifying cultural evolutionary processes that avoid these
local near-optima and instead converge toward systems we
find in human languages.

We have argued that iterated learning plus communication,
as cast in the NIL algorithm, is such a process, and that it

provides a better account than either iterated learning alone,
or communication alone. This idea, and our findings sup-
porting it, may help to resolve a question in the literature.
As we have noted, Carstensen et al. (2015) argued that iter-
ated learning alone can lead to informative semantic systems,
whereas Carr et al. (2020) argued that iterated learning pro-
vides a bias for simplicity, and communication provides a bias
for informativeness (see also Kirby et al., 2015 for a similar
argument concerning linguistic form). Our finding that both
forces are needed to account for the data aligns with Carr et
al.’s (2020) claim. However our finding that learning alone
also converges to efficient systems — although to overly sim-
ple ones — helps to make sense of Carstensen et al.’s (2015)
findings.

It is natural to think of NIL, or any such process of cul-
tural evolution, as a means by which the abstract computa-
tional goal of optimal efficiency might be approximated —
and for the most part, that seems an accurate and useful way
to frame the matter. The optimally efficient color naming sys-
tems on the IB curve closely resemble those in human lan-
guages (Zaslavsky et al., 2018), and the IL+C systems are
likewise highly efficient and similar to those in human lan-
guages. However, there is an important exception to this pat-
tern. As noted above, in the case of 3-term systems, the 1B
optimal system qualitatively differs from the color naming
patterns found in the WCS (Zaslavsky et al., 2018, p. 7941),
whereas IL+C systems qualitatively match them (see e.g. the
top row of Figure 5, middle and right panels). Thus, in this
one case, it appears that human languages do not attain the
optimal solution or something similar to it, and instead attain
a somewhat different near-optimal solution that is apparently
more easily reached by a process of cultural evolution — a
possibility anticipated by Kemp and Regier (2012, p. 1054).

A major question left open by our findings is exactly why
we obtain the results we do. NIL is just one possible evolu-
tionary process, and we have seen that that process accounts
for existing data reasonably well. It makes sense intuitively
that NIL strikes a balance between the simplicity bias of it-
erated learning and the informativeness bias of communica-
tion (Carr et al., 2020; Kirby et al., 2015) — but what is still
missing is a finer-grained sense for exactly which features of
this detailed process are critical, vs. replaceable by others,
and what the broader class of such processes is that would
account well for the data (e.g. Tucker et al., 2022). A re-
lated direction for future research concerns the fact that the
evolutionary process we have explored is somewhat abstract
and idealized, in that agents communicate with little context
or pragmatic inference. Actual linguistic communication is
highly context-dependent, and supported by rich pragmatic
inference — it seems important to understand whether our
results would still hold in a more realistic and richer environ-
ment for learning and interaction. Finally, we have focused
here on the domain of color, but the ideas we have pursued are
not specific to color, so another open question is the extent to
which our results generalize to other semantic domains.
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