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Focal colors, or best examples of color terms, have traditionally
been viewed as either the underlying source of cross-language
color-naming universals or derived from category boundaries that
vary widely across languages. Existing data partially support and
partially challenge each of these views. Here, we advance a position
that synthesizes aspects of these two traditionally opposed positions
and accounts for existing data. We do so by linking this debate to
more general principles. We show that best examples of named color
categories across 112 languages are well-predicted from category
extensions by a statistical model of how representative a sample is
of a distribution, independently shown to account for patterns of
human inference. This model accounts for both universal tendencies
and variation in focal colors across languages. We conclude that
categorization in the contested semantic domain of color may be
governed by principles that apply more broadly in cognition and that
these principles clarify the interplay of universal and language-
specific forces in color naming.

semantic universals | semantic variation | color categories

Focal colors, or best examples of color terms, are at the center
of the debate over language and color cognition. An influ-
ential view (1) holds that focal colors are the source of cross-
language color-naming universals. In this view, color naming
across languages is constrained by the Hering primaries (2) in the
opponent pairs red vs. green and yellow vs. blue as well as black
and white. The best examples of these six color terms are often
understood to be universal privileged points or foci in color
space, such that languages differ in their color-naming systems
primarily by grouping these universal foci into categories in
different ways. There is some empirical support for this view: the
best examples of color terms across languages tend to cluster
near these six points (3, 4), and an early study (5)—but not a
recent follow-up (6)—also found these colors to be cognitively
privileged.

However, Roberson et al. (6) claimed that this influential view
has matters exactly backward. They argued that color categories
are not constrained by universal foci but are instead defined at
their boundaries by local linguistic convention, which varies
across languages (6). They proposed that “Once a category has
been delineated at the boundaries, exposure to exemplars may
lead to the abstraction of a central tendency so that observers
behave as if their categories have prototypes” (ref. 6, p. 395). In
this view, best examples do not reflect a universal cognitive or
perceptual substrate but are merely an after effect of category
construction by language.

A proposal by Jameson and D’Andrade (7) has the potential
to reconcile these two opposed stances. They suggested that
there are genuine universals of color naming but that these do
not stem from a small set of focal colors (7). Instead, in their
view, universals of color naming stem from irregularities in the
overall shape of perceptual color space, which is partitioned into
categories by language in a near-optimally informative way (7).
This proposal (also see refs. 8-11) has been shown to explain
universal tendencies and cross-language variation in the exten-
sions of color categories (12, 13). (Other approaches to the same
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question are discussed in refs. 14-20.) However, it is the best
examples of color categories and not their extensions that are at
the heart of the debate.

Here, we address this open issue, completing the reconcilia-
tion of the two standard opposed views. Following the work by
Roberson et al. (6), we argue that best examples of color cate-
gories across languages are not reflections of underlying uni-
versal focal colors. However, we argue that best examples do not
vary arbitrarily either. Instead, we note that color categories
across languages reflect the functional need for informative
communication about color (7, 12, 13) and argue that best ex-
amples are derived from the resulting informative categories. In
this view, all languages are driven by the same functional forces;
thus, unrelated languages will often independently settle on
similar informative color-naming systems—and when they do,
the best examples of those color categories should also be sim-
ilar. However, color categories may also vary across languages,
representing different informative partitions of color space—and
when categories do vary, the best examples of those categories
should vary with them. Here, we test this account by asking
whether best examples of categories across languages can be
predicted from category extensions and whether such predictions
account for both universal tendencies and cross-language varia-
tion in focal colors.

Pursuing these ideas requires an account of how the best ex-
ample of a category is determined. To this end, we use a rational
model that formally characterizes the best example of a category
in terms of the support that it provides to a Bayesian inference.
This model was originally proposed (21) to account for patterns
of human inference that have been taken to suggest a cognitive
heuristic of “representativeness” (22), as described below. To
preview our results, we find that this model accounts for both
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universal tendencies and variation in focal color choices across
languages.

The remainder of the paper proceeds as follows. We first
describe the data that we consider and a set of competing
models, including the representativeness model, that predicts
best examples of color categories from the extensions of those
categories. We test these models against universal tendencies in
the data and find that the representativeness model outperforms
competing models, consistent with preliminary results using a
different measure of model performance (23). In a separate test,
we then consider cross-language variation in the same data
and again find that the representativeness model outperforms its
competitors. We close by discussing the implications of our
findings.

Predicting Best Examples of Color Categories

Evaluating formal models of color foci requires a good source of
color-naming data. The primary data that we considered were
those of the World Color Survey (WCS), which collected color-
naming data from native speakers of 110 unwritten languages
worldwide (24). Participants in the WCS were shown each of 330
color chips of the stimulus array in Fig. 14 and asked to name
each chip with a color term in their native language; we refer to
the resulting data as “naming data.” Afterward, participants were
asked to pick out those cells in the stimulus array that were the
best examples (foci) of each color term that they used; we refer
to these as “focus data.”

We compared several models that predict best examples of
color categories from the extensions of those categories. We
represented each color in the stimulus array as a point in a
standard 3D perceptual color space, CIELAB (Fig. 1B). (We
also explore representations based on the CIELUV color space
in SI Appendix.) For short distances at least, Euclidean dis-
tance between two colors in CIELAB is roughly proportional
to the perceptual dissimilarity of those colors (25) (but also
see ref. 26). We generate focal color predictions at the indi-
vidual speaker level: for each named color category used by
each speaker in each language of the WCS, we used each
model to predict that speaker’s focus data from that speaker’s
naming data. We provide overviews of our models and anal-
yses here; additional details are in Materials and Methods and
SI Appendix.

Representativeness Model. Why do people believe that the se-
quence of coin flips HHTHT (where H is heads and T is tails) is
more likely to be produced by a fair coin than the sequence
HHHHH? Using simple probability theory, it is easy to show that
the two sequences are, in fact, equally likely. Cognitive psychologists

A

have proposed that people use a heuristic of representativeness
instead of performing probabilistic computations in such scenarios
(22). We might then explain why people believe that HHTHT is
more likely to be produced by a fair coin than HHHHH by argu-
ing that the former is more representative of the output pro-
duced by a fair coin than the latter. However, how do we define
the notion of representativeness to which the heuristic appeals?
Numerous proposals have been made, connecting represen-
tativeness to existing quantities, such as similarity (22) and like-
lihood (27). Tenenbaum and Griffiths (21) provided a rational
analysis (28) of representativeness by trying to identify the prob-
lem that such a quantity solves. They noted that one sense of
representativeness is being a good example of a concept, and
they showed how this could be quantified in the context of
Bayesian inference (21).

Formally, given some observed data d and a set of hypothetical
sources H, we assume that a learner uses Bayesian inference to
infer which & € H generated d. In that context, Tenenbaum and
Griffiths (21) defined the representativeness of data d for hy-
pothesis & to be the evidence that d provides in favor of a specific
h relative to its alternatives:

p(d|h)

> pld)p(h'y
h'#h

R(d,h) =log (1]

where p(d|h) is the likelihood—the probability of d if / is true—
and p(h’) is the prior distribution on hypotheses, renormalized
over i’ #h. In the case of flipping a coin, the numerator corre-
sponds to the probability of a sequence of flips under a fair coin,
whereas the denominator integrates over all ways in which
a coin could be unfair. The numerator is, thus, equal for
HHHHH and HHTHT, but the denominator is greater for
HHHHH, because it is probable under a coin biased toward
heads. Being representative thus requires being probable un-
der & and improbable under alternatives to 4. This measure
was shown to outperform competing accounts based on simi-
larity and likelihood in predicting human representativeness
judgments for a number of simple stimuli. We propose that
this measure can also be used to predict focal colors or best
examples of named color categories from the extensions of
those categories.

Given a Gaussian distribution that characterizes the category
named by color term ¢, we can adopt the representativeness mea-
sure given in Eq. 1 to determine how good an example each color
chip x is of color term ¢. Substituting x in for the observed data d and
t for hypothesis 4, we obtain the expression

B

Fig. 1. Color stimuli from the WCS. (A) The color-naming stimulus array. The rows correspond to 10 levels of Munsell value (lightness), and the columns
correspond to 40 equally spaced Munsell hues. The color in each cell corresponds approximately to the maximum available Munsell chroma for that hue-value
combination. (B) The chips of the stimulus array as plotted in CIELAB color space. The irregularity of the outer surface of the color solid can be seen, most

notably in the yellow region. Reprinted from ref. 13.
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where p(x|t) is given by the density function of a Gaussian fit to
the category named by color term ¢, and the priors p(t’) are pro-
portional to the number of chips in named color category ¢. This
model can be seen as formalizing the claim by Rosch and Mervis
(29) that category prototypes or best examples reflect not just
high similarity to other members of the category (captured here
in the numerator) but also, low similarity to members of other
categories (captured in the denominator).

We test this measure against the alternative proposals men-
tioned above (22, 27): a likelihood model and two similarity
models (a prototype model and an exemplar model). In addition,
we explore a model that selects as the focus for category ¢ that
chip in the extension of ¢ that has the highest chroma. Chroma or
saturation corresponds to how colorful or “ungray” a given color
is, and in exploring this model, we follow the suggestion (7, 12)
that focal colors tend to be those with high chroma (but also see
ref. 30). These models represent different ways in which the best
example of a category may be predicted from the extension of
that category. As with the representativeness model, for a given
color x and color term ¢, each model assigns a score indicating
how good x is as an example of .

Likelihood Model. In this model, the goodness score of color x as
an example of color category ¢ is given by the log of the density
function of the Gaussian distribution that was fit to the naming
data for ¢. Thus,

L(x,t) =log p(x|t). [3]

This model is similar to the representativeness model but lacks
the denominator that captures competition among categories in
that model.

Prototype Model. In this model, we define the focus or prototype
of color category ¢ to be the centroid over the color chips in the
extension of category ¢ (31). The score for this measure is then
the similarity of x to that prototype p;:

P(x,t) =Sim(x, p,), [4]

where Sim( -, - ) characterizes the similarity between two colors
as a function of CIELAB distance,

Sim(x,y) = exp{—c dist(x,y)z}, [5]

and ¢ =0.001 following previous work (12).

Exemplar Model. The exemplar model uses a scoring metric sim-
ilar to that of the prototype model, except that, rather than
computing the similarity of color x to a single prototype, we
compute its similarity to each color chip that falls in the exten-
sion of category ¢ and sum the results:

E(x,t)= Z Sim (x,x;), [6]

x5EX,

where X, is the set of color chips that falls in the extension of
category t.

Chroma Model. The score for this model is given by the similarity
of color x to that color chip ¢, that has the highest chroma
(saturation) value within the extension of category ¢. Thus, we
compute
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C(x, 1) =Sim(x,¢,), [71

where c; is the chip within the extension of ¢ that has the highest
chroma value. In the case of ties for c—that is, several chips with
the same maximum value for chroma—we randomly select a chip
from the set of ties.

Results

We assessed these models as follows. For each speaker of each
language in the WCS, we first considered that speaker’s naming
data and modeled the categories in those data as either a set of
Gaussian probability distributions (for the representativeness
and likelihood models) or a set of 3D points in CIELAB (for the
prototype, exemplar, and chroma models). Then, for each such
category, we determined how good an example of that category
each of the 330 chips in the stimulus array is according to each
model. This procedure yielded, for each model, a ranking of
chips in the array by predicted goodness, and we compared this
model prediction with empirical WCS focus data that specify
which chip(s) were, in fact, selected by that speaker as the best
example(s) of that category. Thus, we compare model predictions
with empirical data on a per speaker basis. Below, we present
both qualitative and quantitative evaluations of the models.

Distribution of Foci. A simple means of assessing the models is to
generate predicted focal choices from each model’s ranking of
chips and then, compare the distribution of those predicted focal
choices with the distribution of actual focus data from the WCS.
Some speakers in the WCS provided more than one focus (best
example) for some categories; if a speaker provided n foci for a
given category, we selected the n top-ranked chips as a given
model’s predicted focal choices for that category and speaker.
In this manner, we obtained, for each model, one predicted
focal choice for each empirical focal choice in the data. We
then counted the number of times that each of the 330 color
chips in the stimulus array was selected as a focal choice,
yielding a distribution of focal choices over the stimulus array.
Interestingly, every chip in the stimulus array was selected at
least once as a focus for some color term by some speaker of
some language. We compared this empirical distribution of
foci across the array with the distribution predicted by each of the
models. Following an earlier analysis of WCS focus data (4), we
plotted these distributions over the chromatic portion of the
array, where the 2D layout makes contours easily interpretable.
The resulting contour plots of the empirical WCS focus dis-
tribution and the five models’ predicted focus distributions are
shown in Fig. 2.

The empirical distribution is shown in Fig. 24, and it replicates
earlier findings (4). The distribution predicted by the represen-
tativeness model (Fig. 2B) matches this empirical distribution
qualitatively fairly well. Moreover, at least on informal in-
spection, the representativeness model appears to approximate
the empirical distribution more closely than do the competing
models. The chroma model (Fig. 2F) at first appears to also
approximate the empirical distribution fairly well, but closer in-
spection reveals that several of the peaks of the model distribution
do not align correctly with those of the empirical distribution (also
see ref. 30).

This qualitative assessment is reinforced by a quantitative one
that considered all chips of the array and not just the chromatic
portion. The quadratic form (QF) distance (32) is a measure of
the difference between two histograms defined over the same
similarity space, and this measure is sensitive to the similarity
structure of that space (Materials and Methods). We computed
the QF distance between the WCS empirical focus distribution
shown in Fig. 24 and each of the model distributions shown in
Fig. 2 B-F, with similarity determined by the function Sim( -, -)
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Fig. 2. Contour plots of the focus distributions (A) in the WCS and as
predicted by (B) the representativeness model, (C) the likelihood model, (D)
the prototype model, (E) the exemplar model, and (F) the chroma model.
Each contour line corresponds to 100 focal choices.

defined above. The results are shown in Table 1, with the best
model score indicated. The representativeness model outper-
forms the other models, diverging less from the empirical dis-
tribution than its competitors.

Each model produces as output a ranking of the stimulus
chips, where rank is assigned in descending order. Thus, another
natural way to assess the models is to note the position of the
true empirical focal choice in this ranked list. The average rank
position for each model is presented in Table 1. As before, we
find that the representativeness model outperforms the other
models, ranking the true foci higher on average.

Language-Level Analysis. The analyses above considered all focus
choices in the WCS as a single distribution, pooling together
choices made by different speakers of different languages. Color
naming varies across languages, and therefore a natural question
is whether the representativeness model also outperforms its
competitors when each language is considered separately. Such
a language-level analysis would be appropriate if we are to
take seriously the hypothesis that category boundaries are

Abbott et al.

determined in part by local linguistic convention (6). We
considered separately each of 110 languages of the WCS and
conducted analyses like those described above but at the lan-
guage level, pooling together focus choices that were made by
speakers of a single language. For each language, we noted which
model best predicted focus choices by speakers of that language
by each of our two metrics. Table 1 (language counts in paren-
theses) shows that, by both metrics, the representativeness model
again outperforms its competitors and exhibits the best perfor-
mance for a majority of the WCS languages. [Four paired ¢ tests
compared average QF distance per language predicted by the
representativeness model with that predicted by each other
model, in each case averaging across speakers and color terms
for each language. The representativeness model outperformed
each other model (P < 0.001), Bonferroni-corrected for multiple
comparisons. Analogous results were also obtained when mea-
suring rank position rather than QF distance.] We also conducted
similar analyses for two languages outside the WCS [Berinmo (6)
and Dani (33)], and the results were similar. Full details of this
cross-language analysis, including results for individual lan-
guages, are presented in SI Appendix. These analyses highlight
both cross- and within-language (i.e., interindividual) variation
in focus choices.

Color Categories with Unusual Extensions

So far, we have shown that a model of focal colors as repre-
sentative members of categories accounts well for the distribu-
tion of WCS best example choices across the stimulus array, as
well as the distribution of best example choices within many
languages. These results are consistent with the proposal that
color foci are representative members of categories and that
their location in color space reflects category extensions, which
are, in turn, shaped by the functional need for color-naming
systems to be informative (12, 13). However, the analyses that we
have seen so far do not discriminate between this hypothesis and
a natural alternative: the traditional view of color foci as re-
flections of unalterably universal privileged points in color space.
For languages with common color-naming systems, the two hy-
potheses make the same prediction: foci should tend to fall in the
canonical positions shown in Fig. 24. This prediction is made by
the traditional universal foci account, because these positions are
the proposed locations of the universal foci. Roughly the same
outcome is predicted by our account as seen in Fig. 2B.

In a final investigation, then, we attempt to discriminate be-
tween these two hypotheses. The hypotheses diverge in their
predictions for color categories that have unusual extensions. If
foci are a universal groundwork for color naming, then in such
unusual cases, foci will fall in the universal (canonical) positions,
despite the noncanonicality of the category extensions. In con-
trast, our account predicts that, in such cases, foci should follow
the category extensions and fall in noncanonical positions. What
is not yet known is (i) whether the representativeness model
accounts for noncanonical empirical distributions better than

Table 1. Quantitative assessment of each model against WCS
focus distribution

Model QF distance Rank position
Representativeness 1.17* (76) 27.67* (104)
Likelihood 1.74 (6) 42.65 (1)
Prototype 1.96 (3) 48.30 (0)
Exemplar 1.64 (24) 38.98 (5)
Chroma 2.13 (1) 78.51 (1)

Numbers in parentheses indicate the number of languages for which the
model performs best.
*Best model score.
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universal foci do and (ii) whether the representativeness
model also outperforms the other competing models consid-
ered above on noncanonical or unusual categories generally.
To test these open questions, we began by defining a formal
model of the universalist account and a measure of category
unusualness.

Universalist Model. Like the other models that we consider, the
universalist model assigns a score indicating how good a given
color chip x is as an example of color term ¢. The score for
the universalist model is determined by the empirical WCS
focus distribution shown in Fig. 24 gated by the extension of
category t:

Ux,t) =W (x) X1 (x,t), [8]

where W (x) is the number of times that color chip x was chosen
as a best example of any term by any speaker in any language in
the WCS, and I(x,¢) is one if x €f and zero otherwise.

Category Unusualness. For each major color term in the WCS, we
computed the unusualness of the category named by this term
based on its average Hausdorff distance (34) to all other major
color categories (Materials and Methods). [We considered a
color term to be a major color term in a language if it was used
by a plurality of speakers of the language for at least 10 of the
330 chips of the stimulus array (13); otherwise, we considered it
a minor term and excluded it from this analysis.] We also
pooled together the focus choices for this term across speakers
of the language in question as well as the analogous focus
predictions by each of the models. Finally, we noted which

model performed best for this category (had the lowest rank
position of the empirical focus distribution; we also consider
QF distance in SI Appendix).

Fig. 3 shows the results of this analysis. The scatterplot in Fig.
3 shows each category as a dot. The dot’s position represents the
category’s unusualness (horizontal axis) and the score (rank
position) of the best performing model for that category (vertical
axis: lower is better). The dot’s color represents the best per-
forming model for that category. It can be seen that the univer-
salist model (red) is best for many categories of low unusualness
(Fig. 3 a—c)—this outcome is unsurprising, because the univer-
salist model is based on universal tendencies in focus choices.
However, for higher values of unusualness, the representative-
ness model (blue) begins to outperform the universalist model
and others as predicted. This progression of increasing domi-
nance for the representativeness model with increasing category
unusualness is shown more schematically in the stacked barplot
in Fig. 3. These findings suggest that, when boundaries fall in
noncanonical positions, foci do as well. Moreover, foci for un-
usual categories are better predicted by representativeness than
they are by expectations based on strictly universal foci or the
other models.

Discussion

Focal colors, or best examples of color terms, are at the center of
the debate over color naming. Focal colors have traditionally
been viewed as either the underlying source of color-naming
universals or derived from category boundaries that vary widely
with local linguistic convention. In contrast, we have argued for
an account of this disputed construct that synthesizes aspects of
these traditionally opposed views and accounts for data that
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Fig. 3. Effect of category unusualness. In the scatterplot (Top Left), each dot represents a color category in the WCS, and the dot'’s color represents the best

performing model for that category. The horizontal axis represents category unusualness, and the vertical axis represents the model performance (rank
position) of the best performing model for that category. In the bar chart (Top Right), the horizontal axis again represents category unusualness, this time
partitioned into 10 bins with the same number of categories per bin. The stacked bars show, for each level of unusualness, the proportion of categories at
that level of unusualness that were best predicted by each model. The bottom panels show example categories labeled in the scatterplot at varying un-
usualness scores, highlighting the types of categories that (a—c) the universalist and (d-f) the representativeness models best predict. Additional details of

these categories are in S/ Appendix.
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challenge each one. We have proposed that focal colors are rep-
resentative members of color categories. This simple idea accounts
for universal tendencies in focal colors, but also correctly predicts
some deviation from those universal tendencies, particularly for
color categories with unusual extensions. Our proposal coheres
naturally with a recent explanation of color naming in terms of
the functional need for informative communication over ir-
regularly shaped perceptual color space (7, 12). That view
explains cross-language universals and variation in color naming
without reference to a small set of focal colors, and it leaves the
nature of focal colors unexplained. Our proposal fills that gap.
Taken together, the two proposals suggest a single overall ac-
count of color naming: color categories across languages assume
the forms that they do because of functional pressure for infor-
mative communication given the structure of color space, and
foci are representative members of those categories.

Materials and Methods

Treatment of the Data. The WCS color-naming data that we analyze are
available at www.icsi.berkeley.edu/wcs/data.html. Because our analyses
concern the relation between category extension (naming data) and best
examples (focus data) on a per speaker basis, we considered only those
categories for which both naming and focus data were available for the
same speaker.

QF Distance. QF distance is a measure of the difference between two his-
tograms, H; and H,, over the same set of points in space, and it takes
into account the similarities between those points (32). QF distance is
defined as

QFy(H1, Ha) =1/ (H4 —Hz)TM(H1 —H,), 9]
where M is an interpoint similarity matrix. In our analyses, we defined M
over the color chips of the stimulus array with m;; =Sim(/, j), where Sim(-, -)
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characterizes the similarity between two colors as a function of CIELAB
distance,

Sim(x,y):exp{—c dist(x,y)z}, [10]
and ¢=0.001 following previous work (12).

Computing Category Unusualness. We took the extension of a major color
term to be that set of chips in the stimulus array that was named by that
color term by a plurality of speakers and represented that set of chips as a
set of points in CIELAB space. We took the dissimilarity between any two
categories X ={x1, ..., Xp}and Y ={y;, ..., yq} to be the Hausdorff distance
H(X,Y) between the two corresponding sets of points. The Hausdorff
distance (34) is determined by finding, for each point in each set, the
nearest point in the other set and selecting the largest of the resulting
distances:

H(X,Y)=max(h(X,Y),h(Y, X)), [11]
where
h(X,Y)=maxmin|x-yl, [12]
XeX yeY

and ||x —y|| is the Euclidean distance between points x and y in CIELAB space.
The unusualness of category ¢, u(c), is the average dissimilarity of ¢ to all
major color categories in the WCS:

PR
u(Q) =g ; H(c, ci), [13]
where i indexes over all N major color categories in the entire WCS.
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